Vol. 127
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-10
Inverse Design of Dielectric Materials by Topology Optimization
By
Progress In Electromagnetics Research, Vol. 127, 93-120, 2012
Abstract
The capabilities and operation of electromagnetic devices can be dramatically enhanced if artificial materials that provide certain prescribed properties can be designed and fabricated. This paper presents a systematic methodology for the design of dielectric materials with prescribed electric permittivity. A gradient-based topology optimization method is used to find the distribution of dielectric material for the unit cell of a periodic microstructure composed of one or two dielectric materials. The optimization problem is formulated as a problem to minimize the square of the difference between the effective permittivity and a prescribed value. The optimization algorithm uses the adjoint variable method (AVM) for the sensitivity analysis and the finite element method (FEM) for solving the equilibrium and adjoint equations, respectively. A Heaviside projection filter is used to obtain clear optimized configurations. Several design problems show that clear optimized unit cell configurations that provide the prescribed electric permittivity can be obtained for all the presented cases. These include the design of isotropic material, anisotropic material, anisotropic material with a non-zero off-diagonal terms, and anisotropic material with loss. The results show that the optimized values are in agreement with theoretical bounds, confirming that our method yields appropriate and useful solutions.
Citation
Masaki Otomori, Jacob Andkjaer, Ole Sigmund, Kazuhiro Izui, and Shinji Nishiwaki, "Inverse Design of Dielectric Materials by Topology Optimization," Progress In Electromagnetics Research, Vol. 127, 93-120, 2012.
doi:10.2528/PIER12020501
References

1. Bendsoe, M. P. and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Comput. Methods Appl. Mech. Engrg., Vol. 71, No. 2, 197-224, 1988.
doi:10.1016/0045-7825(88)90086-2

2. Yoo, J., N. Kikuchi, and J. L. Volakis, "Structural optimization in magnetic devices by the homogenization design method," IEEE T. Magn., Vol. 36, No. 3, 574-580, 2000.
doi:10.1109/20.846220

3. Nomura, T., S. Nishiwaki, K. Sato, and K. Hirayama, "Topology optimization for the design of periodic microstructures composed of electromagnetic materials," Finite Elem. Anal. Des., Vol. 45, No. 3, 210-226, 2009.
doi:10.1016/j.finel.2008.10.006

4. Nishiwaki, S., T. Nomura, S. Kinoshita, K. Izui, M. Yoshimura, K. Sato, and K. Hirayama, "Topology optimization for cross-section designs of electromagnetic waveguides targeting guiding characteristics," Finite Elem. Anal. Des., Vol. 45, No. 12, 944-957, 2009.
doi:10.1016/j.finel.2009.09.008

5. Yamasaki, S., T. Nomura, A. Kawamoto, K. Sato, and S. Nishiwaki, "A level set-based topology optimization method targeting metallic waveguide design problems ," Int. J. Numer. Meth. Eng., Vol. 87, No. 9, 844-868, 2011.
doi:10.1002/nme.3135

6. Borrvall, T. and J. Petersson, "Topology optimization of fluids in stoles flow," Int. J. Numer. Meth. Eng., Vol. 41, No. 1, 77-107, 2003.
doi:10.1002/fld.426

7. Sigmund, O. and J. S. Jensen, "Systematic design of phononic band-gap materials and structures by topology optimization," Phil. Trans. R. Soc. Lond. A, Vol. 361, 1001-1019, 2003.
doi:10.1098/rsta.2003.1177

8. Sigmund, O. and S. Torquato, "Design of materials with extreme thermal expansion using a three-phase topology optimization method ," J. Mech. Phys. Solids., Vol. 45, No. 6, 1037-1067, 1997.
doi:10.1016/S0022-5096(96)00114-7

9. Larsen, U. D., O. Sigmund, and S. Bouwstra, "Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio ," J. Microelectromech. S., Vol. 6, No. 2, 99-106, 1997.
doi:10.1109/84.585787

10. Sigmund, O., "Materials with prescribed constitutive parameters: an inverse homogenization problem," INT. J. Solids Struct., Vol. 31, No. 17, 2313-2329, 1994.
doi:10.1016/0020-7683(94)90154-6

11. Choi, J. S. and J. Yoo, "Design and application of layered composites with the prescribed magnetic permeability," Int. J. Numer. Meth. Eng., Vol. 82, No. 1, 1-25, 2010.

12. El-Kahlout, Y. and G. Kiziltas, "Inverse synthesis of electromagnetic materials using homogenization based topology optimization," Progress In Electromagnetics Research, Vol. 115, 343-380, 2011.

13. Sihvola, A., Electromagnetic Mixing Formulas and Applicataions, The Institution of Engineering and Technology, London, 1999.

14. Bensoussan, A., J. L. Lions, and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company, Amsterdam, 1978.

15. Sanchez-Palencia, E., "Non-homogeneous media and vibration theory," Lecture Notes in Physics, Vol. 127, Springer-Verlag, Berlin, 1980.

16. Hashin, Z., "Analysis of composite materials --- A survey," J. Appl. Mech., Vol. 50, No. 3, 481-505, 1983.
doi:10.1115/1.3167081

17. Milton, G. W., The Theory of Composites, Cambridge University Press, Cambridge, 2001.

18. Sigmund, O., "On the usefulness of non-gradient approaches in topology optimization," Struct. Multidisc. Optim., Vol. 43, No. 5, 589-596, 2011.
doi:10.1007/s00158-011-0638-7

19. Bendsoe, M. P. and O. Sigmund, "Material interpolation schemes in topology optimization," Arch. Appl. Mech., Vol. 69, No. 9, 635-654, 1999.
doi:10.1007/s004190050248

20. Guest, J. K., J. H. Prévost, and T. Belytschko, "Achieving minimum length scale in topology optimization using nodal design variables and projection functions ," Int. J. Numer. Meth. Eng., Vol. 61, No. 2, 238-254, 2004.
doi:10.1002/nme.1064

21. Sigmund, O., "Morphology-based black and white filters for topology optimization," Struct. Multidisc. Optim., Vol. 33, No. 4-5, 401-424, 2007.
doi:10.1007/s00158-006-0087-x

22. Olesen, L. H., "A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow," Int. J. Numer. Meth. Eng., Vol. 65, No. 7, 975-1001, 2006.
doi:10.1002/nme.1468

23. Milton, G. W., "Bounds on the complex permittivity of a two-component composite material," J. Appl. Phys., Vol. 52, No. 8, 5286-5293, 1981.
doi:10.1063/1.329385

24. Hashin, Z., "The elastic moduli of heterogeneous materials," J. Appl. Mech., Vol. 29, No. 1, 143-150, 1962.
doi:10.1115/1.3636446

25. Francfort, G. and F. Murat, "Homogenization and optimal bounds in linear elasticity," Archive for Rational Mechanics and Analysis, Vol. 94, No. 4, 307-334, 1986.
doi:10.1007/BF00280908

26. Lurie, K. A. and A. V. Cherkaev, "Optimization of properties of multicomponent isotropic composites," J. Optimiz. Theory App., Vol. 46, No. 4, 571-580, 1985.
doi:10.1007/BF00939160

27. Milton, G. W., "Modelling the Properties of Composites by Laminates,", Vol. 1, 150-174, Springer-Verlag, New York, 1985.

28. Norris, A. N., "A differential scheme for the effective moduli of composites," Mech. Mater., Vol. 4, No. 1, 1-16, 1985.
doi:10.1016/0167-6636(85)90002-X

29. Sigmund, O., "A new class of extremal composites," J. Mech. Phys. Solids, Vol. 48, No. 2, 397-428, 2000.
doi:10.1016/S0022-5096(99)00034-4

30. Grabovsky, Y. and R. V. Kohn, "Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: the Vigdergauz microstructure," J. Mech. Phys. Solids, Vol. 43, No. 6, 949-972, 1995.
doi:10.1016/0022-5096(95)00017-D

31. Vigdergauz, S., "Energy-minimizing inclusions in a planar elastic structure with macroisotropy," Struct. Optimization, Vol. 17, No. 2-3, 104-112, 1999.
doi:10.1007/BF01195935

32. Svanberg, K., "A class of globally convergent optimization methods based on conservative convex separable approximations," SIAM J Optimiz., Vol. 12, No. 2, 555-573, 2002.
doi:10.1137/S1052623499362822

33. Rayleigh, L., "On the influence of obstacles arranged in rectangular order upon the properties of a medium," Philos. Mag., Vol. 34, No. 211, 481-502, 1892.

34. Wallén, H., H. Kettunen, and A. Sihvola, "Composite near-field superlens design using mixing formulas and simulations," Metamaterials, Vol. 3, No. 3-4, 129-139, 2009.
doi:10.1016/j.metmat.2009.08.002