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Abstract—The capabilities and operation of electromagnetic devices
can be dramatically enhanced if artificial materials that provide certain
prescribed properties can be designed and fabricated. This paper
presents a systematic methodology for the design of dielectric materials
with prescribed electric permittivity. A gradient-based topology
optimization method is used to find the distribution of dielectric
material for the unit cell of a periodic microstructure composed of one
or two dielectric materials. The optimization problem is formulated as
a problem to minimize the square of the difference between the effective
permittivity and a prescribed value. The optimization algorithm uses
the adjoint variable method (AVM) for the sensitivity analysis and
the finite element method (FEM) for solving the equilibrium and
adjoint equations, respectively. A Heaviside projection filter is used
to obtain clear optimized configurations. Several design problems
show that clear optimized unit cell configurations that provide the
prescribed electric permittivity can be obtained for all the presented
cases. These include the design of isotropic material, anisotropic
material, anisotropic material with a non-zero off-diagonal terms, and
anisotropic material with loss. The results show that the optimized
values are in agreement with theoretical bounds, confirming that our
method yields appropriate and useful solutions.
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1. INTRODUCTION

Artificial dielectric materials that are engineered to have an extreme
dielectric constant are of great interest for improving electromagnetic
devices such as electrostatic actuators, waveguides, antennas, etc. This
paper presents a systematic design methodology for the microstructure
design of composites made from two dielectric materials with different
dielectric constants, or a single dielectric material and air. We use
topology optimization to find the shape and distribution of dielectric
elements that exhibits a prescribed desirable dielectric constant.

Topology optimization is the most flexible type of structural
optimization because it allows topological changes as well as shape
changes during the optimization process [1]. Topology optimization
methods have been applied to a variety of problems such as
electromagnetic problems (e.g., [2–5]), fluid dynamics problem
(e.g., [6]), phononics [7] and others. Topology optimization has also
been successfully applied to various microstructure design problems
aiming to develop materials that have extreme properties such as
a negative thermal expansion coefficient [8], a negative Poisson’s
ratio [9], and materials with a prescribed value of a constitutive
tensor such as Young’s modulus [10], magnetic permeability [11], a
dielectric constant [12], and so on. These problems are called inverse
homogenization problems [10].

There are various methods for obtaining an effective permittivity
value for dielectric composites. Analytic methods such as the Clausius-
Mossotti, Maxwell-Garnett, and Bruggeman formulas, which are
also called mixing formulas, compute the effective permittivity of
composites based on the volume of the inclusions [13], however the
accuracy is valid only for certain inclusion shapes such as spheres,
cylinders, and ellipsoids. A homogenization method such as a method
based on asymptotic expansion [14, 15], and also an energy-based
method [16], can be used when dealing with more complicated shapes
where the effective properties are obtained based on the results of finite
element analysis. In this study, an energy-based method is used to
obtain the effective permittivity of the dielectric materials.

There is considerable literature on the investigation of the
theoretical bounds for the effective properties of composites (e.g., [17]).
The primal bounds for two-phase dielectric materials are given by
arithmetic and harmonic means of each dielectric constant. Tighter
bounds can be obtained based on certain available information about
the composites, such as their volume fractions and/or isotropy. In this
paper, we deal with two-dimensional design problems. To evaluate the
permittivity values obtained in optimization, we derive the theoretical
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bounds of the two-dimensional anisotropic effective property in the
principal direction when that of the other principal direction is set to
a prescribed value. Permittivity values obtained in optimizations are
compared with these derived theoretical bounds.

In a previous study on the microstructure design of dielectric
materials [12], a genetic algorithm (GA) was used in the optimization
method. However, meta-heuristic approaches such as GAs, Particle
Swarm Optimization (PSO), and Simulated Annealing (SA) are
generally not suitable for topology optimization since the number of
design variables is usually so large that the optimization becomes
too computationally costly [18]. Hence in [12] design resolution was
limited to extremely coarse discretizations. In this work, a gradient-
based topology optimization method is used to find the distribution of
dielectric material for the unit cell of a periodic microstructure, where
densities are updated based on the sensitivities. The computation of
sensitivities is significantly streamlined by using the adjoint variable
method (AVM). In this way, we are able to solve problems with very
fine discretizations and hence obtain accurate results and detailed
boundary descriptions. The objective of the optimization is to design
dielectric materials that exhibit a prescribed effective permittivity.
Therefore, the optimization problem is formulated as a problem to
minimize the square of the difference between the effective permittivity
and a prescribed value. The optimization algorithm uses the finite
element method (FEM) for solving the equilibrium and adjoint
equations, respectively. A Heaviside projection filter [20] is used
to obtain clear optimized configurations. We study several design
problems including the design of an isotropic material, an anisotropic
material, an anisotropic material with non-zero off-diagonal terms, and
an anisotropic material with loss.

The rest of this paper is as follows. Section 2 describes the
formulation of the homogenization method for obtaining the effective
permittivity, and the optimization problem for the design of dielectric
metamaterials. Section 3 discusses the theoretical bounds of the
effective properties for two-phase composites. Section 4 describes the
numerical implementation based on the formulation of the optimization
problem, which uses the FEM and AVM to compute the sensitivity.
Finally, several numerical examples are provided to confirm the validity
and utility of the presented method.
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2. FORMULATION

2.1. Effective Permittivity

In this study, the electrostatic effective permittivity is obtained on the
basis of the energy-based approach that employ conductivity average
theorems [16] (see also [10]), where the effective permittivities are
expressed in terms of mutual energies as follows. This method assume
that the mutual energies accumulated in the original unit cell and in
the homogenized cell are equivalent. The mutual energy accumulated
in the original unit cell is given as

Qij =
1
2

∫

Ω
εr∇φ̄i · ∇φjdΩ, (1)

where εr represents the element of electric permittivity tensor and φi

and φj are the electric potentials obtained when an electric voltage
is applied in the xi and xj directions, respectively (Figure 1), where
ij=11, 12, 21, 22, and φ̄i denotes the conjugate complex number of φi.
On the other hand, the mutual energy accumulated in the homogenized
cell is given as

QH
ij =

1
2
εeff, ijV

0
i V 0

j V, (2)

where V is the volume and V 0
i is the applied voltage defined in a

boundary condition that produce homogeneous fields. By assuming
Qij = QH

ij , the elements of the effective permittivity tensor, εeff, ij in
Eq. (2), are determined as follows.

εeff =
[

εeff, 11 εeff, 12

εeff, 21 εeff, 22

]
, (3)

where

εeff, 11 =
1

V 0
1

2
V

∫

Ω
εr (x)∇φ̄1 (x) · ∇φ1 (x) dΩ (4)

εeff, 22 =
1

V 0
2

2
V

∫

Ω
εr (x)∇φ̄2 (x) · ∇φ2 (x) dΩ (5)

εeff, 12 =
1

V 0
1 V 0

2 V

∫

Ω
εr (x)∇φ̄2 (x) · ∇φ1 (x) dΩ (6)

εeff, 21 =
1

V 0
1 V 0

2 V

∫

Ω
εr (x)∇φ̄1 (x) · ∇φ2 (x) dΩ, (7)

The electric potential φi are obtained by solving the following
governing equation using the FEM.

∇ · [εr (x)∇φi (x)] = 0, (8)
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Figure 1. Analysis model and boundary conditions for the case of
an electric voltage applied in (a) the horizontal direction, and (b) the
vertical direction.

The left and right boundaries, and the upper and lower boundaries
are, respectively, set to a periodic boundary condition as follows, in
the case when an electric voltage is applied in the horizontal direction
(Figure 1(a)).

φ1(x1, x2) = φ1(x1 − L1, x2) + V 0
1 on Γ3 (9)

φ1(x1, x2) = φ1(x1, x2 − L2) on Γ4, (10)

where V 0
1 is an applied voltage in the horizontal direction and, L1 and

L2 are the unit cell lengths in the x1 and x2 directions, respectively.
The left and right boundaries, and the upper and lower boundaries

are, respectively, set to a periodic boundary condition as follows, in
the case when an electric voltage is applied in the vertical direction
(Figure 1(b)).

φ2(x1, x2) = φ2(x1 − L1, x2) on Γ3 (11)
φ2(x1, x2) = φ2(x1, x2 − L2) + V 0

2 on Γ4, (12)

where V 0
2 is an applied voltage in the vertical direction. The effective

permittivities are obtained by substituting obtained electric potentials
into Eqs. (4)–(7).

2.2. Design Variables

In this work, the distribution of dielectric material inside the fixed
design domain is expressed using relative element densities ρ̃e ∈ [0, 1].
That is, the relative electric permittivity εr inside the fixed design
domain is defined using ρ̃e following the concept of the SIMP method.

εr = (ε1 − ε0) ρ̃p
e + ε0, (13)
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where ε1 is the relative permittivity of the dielectric material, ε0
is the relative permittivity of the background material, and p is a
penalization parameter. For problems that have an active volume
constraint, a large value of p > 1 penalizes intermediate element
densities, since the volume is proportional to ρ̃e but the permittivity
values fall below the line of proportionality. The parameter p ≥ 3
is typically used in structural optimization problems, since the bulk
modulus and shear modulus of interpolated stiffness tensor are required
to satisfy the Hashin-Shtrikman bounds, which isotropic materials
should satisfy [19]. Here, we use p = 3 in the following numerical
examples. It is because the profile of interpolated permittivity by
p = 3 respect to the element density is similar to, even though it is
not the same as, that of the Hashin-Strikman bounds when the loss of
dielectric materials is small.

To ensure that the optimal design is independent of the mesh,
and to obtain a clear optimal configuration, the Heaviside projection
filter is used in this work [20]. Using this filter, the relative element
densities ρ̃e can be computed as shown in the following procedures.
First, intermediate variables µe are computed using design variables ρe

that are typically located in nodes or the center of the finite elements,
as follows.

µe =
∑

j∈Ne

ρew/
∑

j∈Ne

w, (14)

where N e is the neighborhood of elements specified by a circle with the
given filter radius, and w is a weighting function that imposes higher
weights for closer design variables. The relative element densities are
then obtained using the Heaviside function as follows.

ρ̃e = Hs(µe) = 1− e−βµe + µee
−β, (15)

where β is a parameter that adjusts the curvature of the Heaviside
function. To ensure stable convergence of the optimization, the
magnitude of parameter β is gradually increased from 1 to sufficiently
large value (e.g., 500) during the optimization procedure. Published
references provide more details concerning the use of density
filters [20, 21].

2.3. Optimization Problem

Here, we discuss the formulation of the optimization problem that will
be applied to the dielectric material design problems. The purpose
of the optimization is to obtain layouts of dielectric material that
achieve the desired dielectric permittivity. Thus, the objective of the
optimization problem can be formulated as to minimize the square of
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the difference between the target permittivity and obtained effective
permittivity. The optimization problem is described as follows.

inf
ρe

F (ρe) = log
∑

ij

∣∣ε∗eff, ij/ε∗tar, ij − 1
∣∣2 (16)

subject to G =
1

VD

∫

D
ρ̃edΩ− Vmax ≤ 0 (17)

Poisson equation: Eq. (8) (18)
Boundary conditions: Eqs.(9)–(12) (19)

where εeff and εtar respectively represent the effective permittivity and
the target permittivity. The ∗ denotes the use of either ′ or ′′ that apply
to the real or imaginary part of the effective permittivity, respectively.
The subscript ij = 11, 12, 21, 22 denotes the elements of the dielectric
tensor. VD is the volume of the fixed design domain and Vmax is
the upper limit of volume fraction. Note that the logarithm of the
sum of the differences is used as an objective functional to obtain
better numerical scaling. When the differences become smaller during
optimization, the magnitude of the sensitivities also diminish, which
slows convergence.

2.4. Sensitivity Analysis

The sensitivities of the objective functional for the gradient-based
topology optimization are obtained using the adjoint variable method
(AVM). The governing equation is discretized and solved using the
FEM. The discretized governing equation can be described as follows.

Sφi = f , (20)
where S is the stiffness matrix and f is the load vector. The sensitivity
of the objective functional F is then given as

dF

dρ
=

∂F

∂ρ
+ 2Re

(
λT

(
∂S
∂ρ

φi − ∂f
∂ρ

))
, (21)

where λ is an adjoint variable. The adjoint variable λ is obtained by
solving following adjoint problem.

ST λ = − ∂F

∂φi
. (22)

With A as the integrand of the objective functional, the derivative of
the objective functional with respect to the state variable ∂F

∂φi
can be

computed directly as follows.
∂F

∂φi
=

1
V 2

∫

D

(
∂A

∂φi
+

∂A

∂∇φi
· ∇

)
dD, (23)



100 Otomori et al.

where,

∂A

∂φi
= 0 (24)

∂A

∂∇φi
= εr∇φ̄i. (25)

In Eq. (21), ∂f
∂ρ = 0 since the applied voltage is independent with

respect to the design variables. Computation of the derivative using
Eq. (21) can be simplified by following Olesen’s implementation
technique [22].

3. THEORETICAL BOUNDS

In this section, the theoretical bounds of the effective permittivity for
two-phase dielectric composites are discussed.

210-1-2

1

2

Isotropic

Anisotropic

Anisotropic

Figure 2. Bounds of effective permittivity for two constituent
materials with properties ε1 = −2 + 3i and ε2 = 1 + 1i. In the
absence of specific information concerning the dielectric materials, the
effective permittivity is confined to the region Ω. If the volume fraction
of phase 1 is f1 = 0.6, the effective permittivity is confined to the
region Ω′. Furthermore, if the composite is a two-dimensional isotropic
material, the effective permittivity is confined to the region Ω′′.
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3.1. Review of Theoretical Bounds of Effective Permittivity
for Two-phase Composite Material

3.1.1. Bounds of Complex Value Effective Permittivity

Let εeff be the effective permittivity of a two-phase composite with
complex dielectric constants ε1 and ε2. The analytical bounds of εeff
can be illustrated as shown in Figure 2. Here, as an example, the
dielectric constants for phases 1 and 2 are set to ε1 = −2 + 3i and
ε2 = 1 + 1i, respectively, and the volume fraction for phase 1 is set to
0.6 for bounds Ω

′
, Ω

′′
, (the same example as Chap. 27 in [17]). These

bounds are obtained as follows. We note that for composites made
from a single dielectric material and air, the bounds are obtained by
setting ε2 = 1.

In the absence of specific information concerning the topological
distribution of the constituent, the corresponding bounds are the
Wiener harmonic and arithmetic mean bounds expressed by following
equations.

εU0
eff (v) =

(
v

ε1
+

1− v

ε2

)−1

(26)

εL0
eff (w) = wε1 + (1− w)ε2, (27)

as parameters v and w are varied from 0 to 1.
The boundary εU0

eff (v) represents the composite as a laminate
material oriented so that the applied field V 0 is parallel to the direction
of lamination (see Figure 3(a)). On the other hand, boundary εL0

eff (w)
represents the composite as a laminate material oriented so that the
applied field V 0 is orthogonal to the direction of lamination (see
Figure 3(b)).

In addition, if the volume fraction of phase 1, f1, is known, the
effective permittivities at points A and B on the above boundaries εU0

eff

Figure 3. Laminate model.
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and εL0
eff in Figure 2 are determined as follows.

εA
eff =

(
f1

ε1
+

f2

ε2

)−1

(28)

εB
eff = f1ε1 + f2ε2, (29)

where f2 = 1−f1 is the volume fraction of phase 2. Tighter boundaries
are expressed by an arc joining the point A and B that when extended
passes through ε2 and an arc that passes through ε1, that can be
expressed by the following equations as the parameters v and w are
varied from 0 to 1.

εU1
eff = ε2 +

f1ε2 (ε1 − ε2)
ε2 + vf2 (ε1 − ε2)

(30)

εL1
eff = ε1 +

f2ε1 (ε2 − ε1)
ε1 + wf1 (ε2 − ε1)

. (31)

The boundary εU1
eff (v) represents an elliptic assemblage with a core of

component 1 surrounded by component 2 (see Figure 4(a)). On the
other hand, the boundary εL1

eff (w) represents an elliptic assemblage with
a core of component 2 surrounded by component 1 (see Figure 4(b)).
The major and minor diameters of the phase 1 structure, D1a, D1b,
and of the phase 2 structure, D2a, D2b, have following relationship
since the inner and outer ellipses are confocal [23].

D2
2a −D2

2b = D2
1a −D2

1b. (32)

Therefore, volume fraction f1 and parameter v are described as follows.

f1 =
D1aD1b

D2aD2b
(33)

v =
D1aD2a

D1aD2a + D1bD2b
. (34)

Moreover, if we know that the composite is a two-dimensional
isotropic material, then we can define the effective permittivities at
points X and Y on the above boundaries, εU1

eff and εL1
eff , respectively,

using the following equation.

εX
eff = ε1 +

2f2ε1(ε2 − ε1)
2ε1 + f1(ε2 − ε1)

(35)

εY
eff = ε2 +

2f1ε2(ε1 − ε2)
2ε2 + f2(ε1 − ε2)

. (36)

The tighter boundaries are expressed by an arc joining the point
X and Y that when extended passes through ε2 and an arc that passes
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through ε1. These bounds are expressed by following equations as the
parameters v and w are varied from 0 to 1.

εU2
eff = εX

eff +
1− v

1/(εY
eff − εX

eff) + v/(εX
eff − ε2)

(37)

εL2
eff = εX

eff +
1− w

1/(εY
eff − εX

eff) + w/(εX
eff − ε1)

. (38)

The boundary εU2
eff (v) represents the composite as a cylindrical

assemblage with phase 1 as core material and phase 2 as the material
surrounding the core (see Figure 5(a)). Similarly, the boundary εL2

eff (w)
represents the composite as a cylindrical assemblage with phase 2 as
core material and phase 1 as the material surrounding the core (see
Figure 5(b)).

Apart from the elliptic and cylindrical assemblages [24] there
exist a number of other microgeometries that can be shown to
realize any material properties on (and within) the bounds. These
include so-called rank-n laminates [25–28] and hybrid structures [29].
Excluding multiple microstructural length-scales, so-called Vigdergauz
structures have also been shown to attain the bounds in certain
cases [30, 31]. Here we also limit ourselves to one length-scale and
easily manufacturable microstructures and show that Vigdergauz-like
structures are solutions to a variety of different inverse design problems
with real and complex effective properties.

(a) (b)

Figure 4. Cross section of the coated elliptic assemblage.

(a) (b)

Figure 5. Cross section of the coated cylindrical assemblage.
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3.1.2. Bounds of Real Value Effective Permittivity

The bounds of real value effective permittivity versus the volume
fraction f1 is obtained as follows. In the absence of specific information,
εA
eff(f1) in Eq. (28) is the lower bound and εB

eff(f1) in Eq. (29) is the
upper bound of the effective permittivity of the composite materials
versus volume fraction f1. In addition, if we know the composite is
isotropic material, the point εX

eff(f1) in Eq. (35) and εY
eff(f1) in Eq. (36)

are the upper and lower bounds of the effective permittivity of the
composite materials versus volume fraction f1.

3.2. Bounds of 2-D Anisotropic Real Value Effective
Permittivity in the Principal Direction When that of the
Other Principal Direction Is Known

Based on the discussion in Subsection 3.1, the bounds of the anisotropic
effective permittivity in the principal direction when that of the other
principal direction is known are derived in this subsection for the case
when the dielectric constants of the two materials both have real values.
From Eq. (34),

1− v =
D1bD2b

D1aD2a + D1bD2b
(39)

Eq. (34) and Eq. (39) are symmetric with respect to the principal
directions, a and b, so ε(v) and ε(1−v) show the effective permittivities
of the two principal directions. If we know the permittivity value of
one of the principal directions and let it be ε∗, the parameter v and w
in Eqs. (30) and (31) is obtained as,

v∗ =
f1ε2(ε1 − ε2)− ε2(ε∗ − ε2)

f2(ε1 − ε2)(ε∗ − ε2)
(40)

w∗ =
f2ε1(ε2 − ε1)− ε1(ε∗ − ε1)

f1(ε2 − ε1)(ε∗ − ε1)
. (41)

We then derive the following bounds, substituting 1 − v∗ and 1 − w∗
into Eqs. (30) and (31).

εL
eff = ε2 +

2f1ε2 (ε1 − ε2)
2ε2 + (1− v∗)f2 (ε1 − ε2)

(42)

εU
eff = ε1 +

2f2ε1 (ε2 − ε1)
2ε1 + (1− w∗)f1 (ε2 − ε1)

. (43)
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4. NUMERICAL IMPLEMENTATION

The optimization flowchart is shown in Figure 6. First, the design
variables are initialized. Next, the filtered design variable ρ̃e is
computed using the projection function and the Heaviside function.
Objective and constraint functionals are then computed using the
FEM. If the objective functional has converged, the optimization
procedure is terminated. If not, the sensitivities of the objective
and constraint functionals are computed using the AVM. The design
variables are then updated using the method of moving asymptotes
(MMA) [32] and the process returns to the second step.

5. NUMERICAL EXAMPLES

Numerical examples are now presented to demonstrate the validity
and capability of our method for the design of microstructures
based on dielectric materials. First, we compare the asymptotic
expansion-based and energy-based approaches used to obtain effective
permittivity values for the dielectric composites considered here.
The following design examples include the design of an isotropic
material, an anisotropic material, an anisotropic material with a non-
zero off-diagonal terms, and an anisotropic material with loss. The
optimization target in all examples is to minimize the square of the
difference between the effective permittivity and a target value. The
design domain is discretized using 200 × 200 square elements. A
circular rod shape with a volume fraction of 50% is used as the initial
configuration unless otherwise specified in the following examples.

Compute objective function and constraint 

function using FEM

Compute sensitivities using 

Adjoint Variable Method

Update design variables  using MMA

Convergence?

Compute   via projection function and 

Heaviside function

Initialize design variable

End

e
ρ

YES

NO

e
ρ~

e
ρ

Figure 6. Flowchart of optimization algorithm.
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5.1. Comparison of Methods to Obtain Effective
Permittivity Values

Here, we compare the asymptotic expansion-based approach and
the energy-based approach to show the validity of the energy-based
approach used in this paper to obtain effective permittivity values for
the dielectric materials. Figure 7 shows a comparison of the effective
permittivity values obtained using both approaches for composites
made from a single dielectric material with ε1 = 100 and air, (ε0 = 1).
Four inclusion shapes with volume fractions of 50% are considered
for the comparison. That is, inclusions with a cylindrical hole
(Figure 7(a)), cylindrical inclusions (Figure 7(b)), vertically oriented
laminates (Figure 7(c)), and vertically oriented laminates rotated 26.57
degrees in the counterclockwise direction (Figure 7(d)) are considered.
The effective permeability values obtained using analytic methods are
also compared for reference. For a square lattice with cylindrical holes
and a lattice with cylindrical inclusions, the Rayleigh formula, defined
as follows [33, 34], provides sufficient accuracy.

εeff = εe +
2pεe

εi + εe

εi − εe
− p− εi − εe

εi + εe
(0.3058p4 + 0.0134p8)

, (44)

where εi is the permittivity of the cylindrical component, p is its volume
fraction, and εe is the permittivity of the background material. For
laminate inclusions, the effective permittivity can be obtained using
the Wiener harmonic and arithmetic means (Eqs. (26) and (27)).

εeff =
[
50.5 0.0
0.0 1.980

]
. (45)

The effective permittivity values for vertically oriented laminates
rotated 26.57 degrees in the counterclockwise direction are obtained
by rotating the effective permittivity tensor of the vertically oriented
laminates as follows.

εeff =
[

cosθ sinθ
−sinθ cosθ

]T[50.5 0.0
0.0 1.980

][
cosθ sinθ
−sinθ cosθ

]
=

[
40.796 19.408
19.408 11.684

]
, (46)

where θ is set to 26.57 degrees. We note that analytic methods are
valid only for certain inclusion shapes.

For both the asymptotic expansion-based and energy-based
approaches, the effective permittivity values are obtained using the
FEM. Here, the analysis domain is discretized using 200 × 200 square
elements. The effective permittivity values using the asymptotic
expansion-based approach are obtained via following equation.

εAS
eff, ij =

1
Y

∫

Ω
εr(x)

(
δij +

∂χj

∂xi

)
dΩ, (47)
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Analytical method Asymptotic expansion-

based approach

Energy-based approach

Rayleigh formula

Rayleigh formula

Wiener harmonic and

arithmetic means 

Wiener harmonic and

arithmetic means 

(a)

(b)

(c)

(d)

Figure 7. Comparison of effective permittivity values obtained
using asymptotic expansion-based and energy-based approaches for
composites made from a single dielectric material (black: ε1=100)
and air (white: ε0=1). (a) Inclusions with a cylindrical hole.
(b) Cylindrical inclusions. (c) Vertically oriented laminates.
(d) Vertically oriented laminates rotated 26.57 degrees in the
counterclockwise direction.

where Y is the unit cell length and χj is obtained by solving following
equation with periodic boundary conditions imposed.

−∇ · (εr∇χj) =
∂εr

∂xj
. (48)

As shown in Figure 7, the effective permittivity values obtained using
the analytic methods and the asymptotic expansion-based and energy-
based approaches are very close for the above four inclusion shapes,
demonstrating the validity of the energy-based approach used in this
paper.

5.2. Design of Isotropic Material

Here, we consider the design of an isotropic material. The target value
is set to εtar,11 = εtar,22 = 70. The relative permittivity of the dielectric
material is set to 100 and the relative permittivity of the background



108 Otomori et al.

material is set to 1. The maximum volume fraction is set to 82.5%, a
value chosen from theoretical bounds that will be discussed below.

The optimization results are shown in Figure 8. The obtained
effective permittivity is

εeff =
[

70.00 0.00
0.00 70.00

]
. (49)

The permittivity values and optimal configuration show that the
optimization successfully obtained a clear structure that provides the
target permittivity.

Figure 10 shows the theoretical bounds for the effective
permittivity of composite materials composed of the above-mentioned
dielectric and background materials, where the horizontal axis shows
the volume fraction of the dielectric material and the vertical axis
shows the effective permittivity of the composite material. The
theoretical bounds for anisotropic and isotropic materials are shown
by solid and dashed lines, respectively. The effective permittivity of
the optimized configuration is shown as the black square in Figure 10
for comparison with the theoretical bound curve, and demonstrates
that the obtained result is in good agreement with theoretical bounds.

Figure 8. Optimized configuration of the isotropic material design
problem for volume fraction Vmax = 0.825 of ε1 = 100 (black), and
ε0 = 1 (white). The targets are εtar, 11 = εtar, 22 = 70 and the achieved
properties are εeff, 11 = εeff, 22 = 70.

Figure 9. Optimized configuration of the anisotropic material design
problem for volume fraction Vmax = 0.76 of ε1 = 100 (black), and
ε0 = 1 (white). The targets are εtar, 11 = 45 and εtar, 22 = 70 and the
achieved properties are εeff, 11 = 45.00 and εeff, 22 = 70.00.
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5.3. Design of Anisotropic Material

Next, the design of an anisotropic material is considered. The target
value is set to εtar,11 = 45, and εtar,22 = 70. The relative permittivity
of the dielectric material is set to 100 and the relative permittivity of
the background material is set to 1. The maximum volume fraction is
set to 76%, a value chosen from theoretical bounds.

The optimization results are shown in Figure 9. The obtained
effective permittivity is

εeff =
[

45.00 0.00
0.00 70.00

]
. (50)

The permittivity values and optimal configuration show that the
optimization obtained the target permittivity for the anisotropic
material to a highly practical extent. Figure 10 shows the theoretical
bounds for the effective permittivity. The effective permittivity of the
optimized configuration is shown as the black dot in Figure 10 for
comparison with the theoretical bound curve. The highly sloped dot-
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Figure 10. Theoretical bounds for isotropic and anisotropic material
design problems with properties ε1 = 100 and ε0 = 1. The solid and
dashed lines show the theoretical bounds for isotropic and anisotropic
material, respectively. The dot-dashed line plots the upper and lower
limit of the permittivity of the anisotropic material versus the volume
fraction when ε22 = 70. The effective permittivity of the optimized
configuration, εeff, 11 = εeff, 22 = 70.00, of Subsection 5.2 is shown
as the black square, and the effective permittivity of the optimized
configuration, εeff, 11 = 45.00 and εeff, 22 = 70.00, of Subsection 5.3
is shown as the black dot, for comparison with the theoretical bound
curve.
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dashed line plots the upper limit of the permittivity of the anisotropic
material versus the volume fraction when ε22 is 70. Similarly, the
dot-dashed line that is partially obscured by solid line in the lower
right corner of the graph shows the lower limit of the permittivity of
the anisotropic material versus the volume fraction when ε22 is 70.
The black dot indicates the effective permittivity value of obtained
dielectric materials as optimization results and that the obtained result
is in good agreement with theoretical bounds.

5.4. Design of Anisotropic Material with Non-zero
Off-diagonal Terms

Here, the design of an anisotropic material with non-zero off-diagonal
terms is considered. The target dielectric permittivity is set to

εtar =
[

εa + δcos2φ δsin2φ
δsin2φ εa − δcos2φ

]
, (51)

where φ is set to 15 degrees and εa and δ are respectively set to 125
and 40. That is,

εtar =
[

159.64 −20
−20 90.36

]
. (52)

The relative permittivity of the dielectric material is set to 240 and
the relative permittivity of the background material is set to 20. The
maximum volume fraction is set to 69%, a value chosen from theoretical
bounds.

The optimization results are shown in Figure 11. The obtained
effective permittivity is

εeff =
[

159.63 −20
−20 90.36

]
. (53)

Figure 11. The optimized configuration of the anisotropic material
design problem with non-zero off-diagonal terms for volume fraction
Vmax = 0.69 of ε1 = 240 (black), and ε0 = 20 (white). The targets
are εtar, 11 = 159.64, εtar, 22 = 90.36 and εtar, 12 = εtar, 21 = −20.00
and the achieved properties are εeff, 11 = 159.63, εeff, 22 = 90.36 and
εeff, 12 = εeff, 21 = −20.00.
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Figure 12. Theoretical bounds for anisotropic material designs with
properties ε1 = 240 and ε0 = 20. The solid and dashed lines show the
theoretical bounds for isotropic and anisotropic material, respectively.
The dot-dashed line plots the upper limit of the permittivity of the
anisotropic material versus the volume fraction when ε22 = 85. The
effective permittivity of the optimized configuration, εeff, 11 = 164.99
and εeff, 22 = 85.00, in the principal direction is shown as the black dot
for comparison with the theoretical bound curve.

The results show the optimization successfully obtained an optimized
configuration that provides the desired permittivity for an anisotropic
material that has non-zero off-diagonal terms.

Figure 12 shows the theoretical bounds for the effective
permittivity. Here, the obtained effective permittivities in the principal
direction are considered, namely,

εeff =
[

164.99 0.00
0.00 85.00

]
. (54)

The effective permittivity of the optimized configuration is shown
as the black dot for comparison with the theoretical bound curve. The
dot-dashed lines plot the upper and lower limit of the permittivity of
the anisotropic material versus the volume fraction when ε22 is 85.

5.5. Design of Material with Loss Targeting Extreme Values

Finally, this design example considers materials with loss. To consider
the design of a lossy material, we first consider design problems where
target values are known from a theoretical point of view. In these
examples, the relative permittivity of the dielectric material is set



112 Otomori et al.

i5.05.1 +

i2.04.1 +

i0.3081.462+

i0.3791.448+

Target1

Target2

Target 3

Anisotropic + Volume 50% 

Anisotropic

Isotropic + Volume 50%

0.0

1.0

0.5

1.0 2.01.5

Figure 13. Theoretical bounds for lossy materials with properties
ε1 = 2 + 1i and ε0 = 1. The solid line shows the theoretical bounds
for two constituent materials, and the dashed-dot line and dashed line
show the theoretical bounds for anisotropic and isotropic material with
a volume fraction of 50%, respectively. The black dots indicate the
target values used in the optimization in Subsection 5.5.

to 2 + 1i and the relative permittivity of the background material
is set to 1. The maximum volume fraction is set to 50%. Figure 13
shows the upper and lower bounds for the effective permittivity of
composite materials composed of dielectric and background materials.
The theoretical bounds for an anisotropic material, an anisotropic
material with a volume fraction of 50%, and an isotropic material with
a volume fraction of 50% are respectively shown by the solid line, the
dot-dashed line, and the dashed line.

Based on these theoretical bounds, three target values were used
to validate the present method. As shown in Figure 13, the target
values for the three examples were as follows:

For Example 1, the anisotropic material design problem, εtar,11 =
1.5 + 0.5i. For Example 2, the isotropic material design problem
with maximum loss, εtar,11 = εtar,22 = 1.4483 + 0.3793i. And, for
Example 3, the isotropic material design problem with minimum loss,
εtar,11 = εtar,22 = 1.4615 + 0.3077i.

Figures 14, 15 and 16 show the respective optimization results for
each example. The obtained effective permittivity in Example 1 is

εeff =
[

1.500 + 0.500i 0.0
0.0 1.400 + 0.200i

]
. (55)
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Figure 14. The optimized configuration of a lossy material design
problem: target1, for volume fraction Vmax = 0.5 of ε1 = 2 + 1i
(black — lossy material) and ε0 = 1 (white). The target is εtar, 11 =
1.5 + 0.5i and the obtained properties are εeff, 11 = 1.500 + 0.500i,
εeff, 22 = 1.400 + 0.200i, and εeff, 12 = εeff, 21 = 0.0.

Figure 15. The optimized configuration of a maximum loss material
design problem: target2, for volume fraction Vmax = 0.5 of ε1 =
2 + 1i (black — lossy material) and ε0 = 1 (white). The target
is εtar, 11 = εtar, 22 = 1.448 + 0.379i and the obtained properties are
εeff, 11 = εeff, 22 = 1.446 + 0.377i and εeff, 12 = εeff, 21 = 0.0.

Figure 16. The optimized configuration of a minimum loss material
design problem: target3, for volume fraction Vmax = 0.5 of ε1 =
2 + 1i (black — lossy material) and ε0 = 1 (white). The target
is εtar, 11 = εtar, 22 = 1.462 + 0.308i and the obtained properties are
εeff, 11 = εeff, 22 = 1.459 + 0.308i and εeff, 12 = εeff, 21 = 0.0.

Although only ε11 was considered as the target value in the
optimization, the obtained value of ε22 is in good agreement with the
theoretical value of ε22, that is, ε22 = 1.4 + 0.2i.

The obtained effective permittivity for Example 2 is

εeff =
[

1.446 + 0.377i 0.0
0.0 1.446 + 0.377i

]
, (56)
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and the obtained effective permittivity for Example 3 is

εeff =
[

1.459 + 0.308i 0.0
0.0 1.459 + 0.308i

]
. (57)

These results show that the optimization can successfully find an
optimized configuration that has a desired permittivity even for the
design of a lossy material.

Observing the optimized structures for maximum damping
(Example 2) and minimum damping (Example 3) we note that the
results match intuition. For the lossy design, the lossy constituent
provides the matrix and the non-lossy is an isolated inclusion — and
vise versa.

5.6. Design of Anisotropic Material with Loss: Effect of
Initial Configurations

Here, the design of anisotropic materials with loss is considered. The
relative permittivity of the dielectric materials is set to 140−0.196i and
the relative permittivity of the background material is set to 20−0.012i.
Three different initial configurations are used in this design problem.
The target values are set to εtar,11 = 60−0.06i and εtar,22 = 70−0.08i.

Figures 17, 18 and 19 show the optimization results based
on different initial configurations. Figure 17(a) shows the rod-
shaped initial configuration and Figure 17(b) shows its optimized
configuration. The volume fraction of the optimized configuration is
60.13%. The obtained effective permittivity is

εeff =
[

59.80− 0.060i 0.0
0.0 69.64− 0.080i

]
. (58)

(a) (b)

Figure 17. (a) The rod-shaped initial configuration, and (b)
the optimized configuration of an anisotropic lossy material design
problem, for ε1 = 140−0.196i (black) and ε0 = 20−0.012i (white). The
target is εtar,11 = 60.00 − 0.060i and εtar,22 = 70.00 − 0.080i, and the
obtained properties are εeff, 11 = 59.80− 0.060i, εeff, 22 = 69.64− 0.080i
and εeff, 12 = εeff, 21 = 0.0.
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(a) (b)

Figure 18. (a) The cross-shaped initial configuration, and (b) the
optimized configuration of an anisotropic lossy material design problem
for ε1 = 140− 0.196i (black) and ε0 = 20− 0.012i (white). The target
is εtar,11 = 60.00−0.060i and εtar,22 = 70.00−0.080i, and the obtained
properties are εeff, 11 = 59.97 − 0.060i, εeff, 22 = 70.00 − 0.080i and
εeff, 12 = εeff, 21 = 0.0.

(a) (b)

Figure 19. (a) The initial configuration in which the density
gradually changes over the design domain, and (b) the optimized
configuration of an anisotropic lossy material design problem, for
ε1 = 140 − 0.196i (black) and ε0 = 20 − 0.012i (white). The target is
εeff, 11 = 60.00 − 0.060i and εeff, 22 = 70.00 − 0.080i, and the obtained
properties are εeff, 11 = 60.00 − 0.060i, εeff, 22 = 69.82 − 0.080i and
εeff, 12 = εeff, 21 = 0.0.

Figure 18(a) shows the cross-shaped initial configuration and
Figure 18(b) shows its optimized configuration. The volume fraction
of the optimized configuration is 61.50%. The obtained effective
permittivity is

εeff =
[

59.97− 0.060i 0.0
0.0 70.00− 0.080i

]
. (59)

Figure 19(a) shows the initial configuration in which the density
gradually changes over the design domain, from a maximum value
at the center (ρ = 1) to zero density at the boundaries (ρ = 0).
Figure 19(b) show the optimized configuration based on this initial
configuration. The volume fraction of the optimized configuration is



116 Otomori et al.

Anisotropic + Volume 61.5% 

Anisotropic

0.0

-0.05

0 50

-0.10

-0.15

-0.20

100 150

Figure 20. Theoretical bounds of anisotropic lossy material with
properties ε1 = 140 − 0.196i and ε0 = 20 − 0.012i. The solid
line shows the theoretical bounds for two constituent materials, and
the dashed-dot line shows the theoretical bounds for an anisotropic
material with a volume fraction of 61.5%. Two black dots show the
effective permittivity of the optimized configuration when using the
cross-shaped initial configuration.

61.56%. The obtained effective permittivity is

εeff =
[

60.00− 0.060i 0.0
0.0 69.82− 0.080i

]
. (60)

The different optimized structures obtained from the three different
initial configurations indicate that this problem has several local
optima. Although the obtained optimal values differ slightly from the
target value, clear optimized configurations that achieve the prescribed
permittivity value are obtained.

Figure 20 shows the upper and lower bounds of the effective
permittivity of composite materials composed of the two different
lossy dielectric materials. The solid line shows the theoretical bounds
for two constituent materials, and the dashed-dot line shows the
theoretical bounds for the anisotropic material with loss that has a
volume fraction of 61.5%. The two black dots represent the effective
permittivity values of the optimized configuration based on the cross-
shaped initial configuration. Here, we evaluate only the effective
permittivity values obtained in the optimization using the cross-shaped
initial configuration, but the evaluations are very similar to those for
the other two cases.
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6. CONCLUSION

In this paper, we presented a gradient-based topology optimization
method that can be applied to the design of microstructures based
on a periodic array of dielectric materials to achieve desired electric
permittivities. A simple homogenization method was used to obtain
the effective permittivity and the validity of the proposed method was
demonstrated through several design problems, namely, those dealing
with an isotropic material, an anisotropic material, an anisotropic
material with a non-zero off-diagonal term, and an anisotropic material
with loss. Clear optimized configurations with prescribed electric
permittivities were obtained for all the presented cases. Moreover,
we derived the theoretical bounds of the two-dimensional anisotropic
effective property in the principal direction when the effective property
in the other principal direction was set to a prescribed value, to
evaluate the effective permittivity values obtained by the optimization.
Our results showed that the optimized values are in good agreement
with theoretical bounds, confirming that our method yields appropriate
and useful solutions.

The Vigdergauz-like optimized structures obtained in this paper
provide a directly manufacturable alternative to the multi-length
scale microstructures from the literature. The scheme should be
directly extendable to three-dimensions, more than two constituents
and metamaterial design.
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