Vol. 127
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-10
Calculation of Shape Derivatives with Periodic Fast Multipole Method with Application to Shape Optimization of Metamaterials (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 127, 49-64, 2012
Abstract
This paper discusses computation of shape derivatives of electromagnetic fields produced by complex 2-periodic structures. A dual set of forward and adjoint problems for Maxwell's equations are solved with the method of moments (MoM) to calculate the full gradient of the object function by the adjoint variable method (AVM). The periodic fast multipole method (pFMM) is used to accelerate the solution of integral equations for electromagnetic scattering problems with periodic boundary conditions (PBC). This technique is applied to shape optimization problems for negative-index metamaterials (NIM) with a double-fishnet structure. Numerical results demonstrate that the figure of merit (FOM) of metamaterials can reach a maximum value when the shape parameters are optimized iteratively by a gradient-based optimization method.
Citation
Wu Wang, and Naoshi Nishimura, "Calculation of Shape Derivatives with Periodic Fast Multipole Method with Application to Shape Optimization of Metamaterials (Invited Paper)," Progress In Electromagnetics Research, Vol. 127, 49-64, 2012.
doi:10.2528/PIER12013109
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Zhang, S., W. Fan, N. Panoiu, R. Osgood, and S. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, No. 13, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404

3. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Opt. Lett., Vol. 32, No. 1, 53-55, 2007.
doi:10.1364/OL.32.000053

4. Valentine, J., S. Zhang, T. Zentgraf, and X. Zhang, "Development of bulk optical negative index fishnet metamaterials: Achieving a low-loss and broadband response through coupling," Proceedings of the IEEE, Vol. 99, No. 10, 1682-1690, 2011.
doi:10.1109/JPROC.2010.2094593

5. Dolling, G., C. Enkrich, C. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, No. 18, 11536-11541, 2007.
doi:10.1364/OE.15.011536

6. Smith, D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients ," Phys. Rev., Vol. B65, 195104, 2002.

7. Kildishev, A. V., U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. A. Werner, "Stochastic optimization of low-loss optical negative-index metamaterial," J. Opt. Soc. Am. B, Vol. 24, A34-A39, 2007.
doi:10.1364/JOSAB.24.000A34

8. Bossard, J. A., S. Yun, D. H. Werner, and T. S. Mayer, "Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithm," Opt. Express, Vol. 17, 14771-14779, 2009.
doi:10.1364/OE.17.014771

9. Zhao, Y., F. Chen, Q. Shen, Q. Liu, and L. Zhang, "Optimizing low loss negative index metamaterial for visible spectrum using differential evolution," Opt. Express, Vol. 19, 11605-11614, 2011.
doi:10.1364/OE.19.011605

10. Otani, Y. and N. Nishimura, "A periodic FMM for Maxwell's equations in 3D and its applications to problems to photonic crystals," J. Comput. Phys., Vol. 227, No. 9, 4630-4652, 2008.
doi:10.1016/j.jcp.2008.01.029

11. Otani, Y. and N. Nishimura, "An FMM for orthotropic periodic boundary value problems for Maxwell's equations," Waves in Random and Complex Media, Vol. 19, No. 1, 80-104, 2009.
doi:10.1080/17455030802616863

12. Ergül, Ö. and L. Gürel, "Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104

13. Bondeson, A., Y. Yang, and P. Weinerfelt, "Shape optimization for radar cross sections by a gradient method," Int. J. Num. Meth. Eng., Vol. 61, 687-715, 2004.
doi:10.1002/nme.1088

14. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

15. Fraysse, V., L. Giraud, S. Gratton, and J. Langou, "Algorithm 842: A set of GMRES routines for real and complex arithmetics on high performance computers," ACM Trans. Math. Softw., Vol. 31, No. 2, 228-238, 2005.
doi:10.1145/1067967.1067970

16. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

17. Byrd, R. H., J. Nocedal, and R. B. Schnabel, "Representations of quasi-Newton matrices and their use in limited memory methods," Mathematical Programming, Vol. 63, No. 4, 129-156, 1994.
doi:10.1007/BF01582063

18. Veronis, G., R. W. Dutton, and S. Fan, "Method for sensitivity analysis of photonic crystal devices," Opt. Lett., Vol. 29, No. 19, 2288-2290, 2004.
doi:10.1364/OL.29.002288

19. Niino, K. and N. Nishimura, "Preconditioning based on Calderon's formulae for periodic fast multipole methods for Helmholtz' equation," J. Comput. Phys., Vol. 231, 66-81, 2012.
doi:10.1016/j.jcp.2011.08.019