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Abstract—This paper discusses computation of shape derivatives of
electromagnetic fields produced by complex 2-periodic structures. A
dual set of forward and adjoint problems for Maxwell’s equations
are solved with the method of moments (MoM) to calculate the full
gradient of the object function by the adjoint variable method (AVM).
The periodic fast multipole method (pFMM) is used to accelerate the
solution of integral equations for electromagnetic scattering problems
with periodic boundary conditions (PBC). This technique is applied to
shape optimization problems for negative-index metamaterials (NIM)
with a double-fishnet structure. Numerical results demonstrate that
the figure of merit (FOM) of metamaterials can reach a maximum value
when the shape parameters are optimized iteratively by a gradient-
based optimization method.

1. INTRODUCTION

Metamaterials are a class of composite materials with sub-
wavelength structures. It is said that one can control the material
properties of metamaterials relatively freely by designing the structure
appropriately. Optical negative-index metamaterials (NIM) are
particularly interesting, which have negative effective refractive index
in the optical range. One may possibly achieve a perfect focusing of
light beams with optical NIM (perfect lens) as discussed by Pendry [1].
Early experimental investigations on optical NIMs are found in Zhang
et al. [2] who suggested the double-fishnet (DF) grating structure and
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in [3] by Dolling et al. who fabricated a DF structure and tested
it at 780 nm wavelength. The reader is referred to Valentine et
al. [4] for subsequent developments related to negative index fishnet
metamaterials.

It is known, however, that such metamaterials are always
with losses whose reduction is very important in the design of
metamaterials [5]. Since the imaginary part of the effective refractive
index n indicates the loss, it is required to make the figure of merit
(FOM) defined by −Re(n)/Im(n) as large as possible. We are thus
lead to an optimization problem which can be described as

max
τ

FOM = −Re(n(r, t))/Im(n(r, t)), (1)

where r = r(τ ) is the reflection coefficient, t = t(τ ) the transmission
coefficient, and n an effective refractive index retrieved from r and
t [6], respectively. Also, τ = (τ1, . . . , τp) is a vector of p shape design
parameters, such as thickness of each layer and line width of the DF
grating structure, etc..

Related investigations are found in literature (e.g., [7–9]), which
utilize so called stochastic optimization techniques such as genetic
algorithm, simulated annealing, etc. These approaches are effective
when it is hard to imagine the optimal structure and difficult to
obtain shape derivatives. When one can roughly guess the optimal
structure or has only limited design possibilities due to fabrication
constraints, one may well be interested in more classical gradient-
based optimization methods. This motivated us to investigate shape
derivatives of electromagnetic fields produced by complex structures
composed of many constituents.

Specifically, we consider the adjoint variable method (AVM) which
solves one direct and one adjoint problems to get the full gradients of a
certain object function and is therefore considered more efficient than
the finite difference which is more costly than AVM when p ≥ 2 since
it has to solve direct problems at least p + 1 times.

Among numerical solvers widely used for optical problems, such
as finite-difference time-domain method, finite element method, we
choose the method of moments (MoM) accelerated with the fast
multipole method (FMM), which is considered to be attractive in
scattering problems. An example of the use of FMM accelerated MoM
in metamaterial applications is found in [12] where a conventional (non-
periodic) FMM formulation has been utilized. We here use a particular
kind of FMM tailored for periodic problems called periodic FMM
(pFMM), whose details for Maxwell’s equations in 3D are described
in [10, 11]. As regards AVM for transmission problems for Maxwell’s
equations, the fundamentals have been discussed in [13]. As it appears,
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however, careful discussions for scattering problems in multidomains
with periodic structures are yet to be made.

This paper is organized as follows: Maxwell’s equations with
periodic boundary conditions and pFMM are discussed in Section 2.
The gradients of transmission and reflection coefficients evaluated by
AVM are presented in Section 3. Numerical results for verification
of AVM and shape optimization of metamaterial are demonstrated in
Section 4. The concluding remarks are given at the last section.

2. PERIODIC BOUNDARY VALUE PROBLEM

Let D be a domain in R3 defined by

D =
{

(x1, x2, x3)| −∞ < x1 < ∞, −L

2
≤ x2,3 ≤ L

2

}
,

where L is a positive number called periodic length. The domain D
consists of disjoint periodic subsets Dd, i.e., D =

⋃N
d=1 D̄d, where N is

the number of subdomains. Among these subdomains, there are two
and only two infinite subdomains denoted by D1 and DN , respectively,
with D1 (DN ) being the one which extends to x1 → −∞ (+∞). In
D1, we consider an incident field denoted by (Ei, Hi). Also, the set
defined by Sp =

{
x
∣∣x ∈ ⋃

∂Dd, |x2| = L/2 or |x3| = L/2
}

is called
the periodic boundary.

The 2-periodic electromagnetic scattering problem for a periodic
structure is defined as follows: One solves Maxwell’s equations

∇×E(x) = iωµdH(x), ∇×H(x) = −iωεdE(x),
x ∈ Dd, d = 1, . . . , N (2)

subject to the boundary condition

[E× n] = 0, [H× n] = 0 (3)

on the interfaces between subdomains, radiation conditions for the the
scattered field (Es, Hs) defined by (E−Ei, H−Hi) in D1, radiation
conditions for (E, H) in DN , and the periodic boundary condition
(PBC) on Sp. In this statement, E and H are the electric and magnetic
fields, ω is the angular frequency, εd and µd are the permittivity and
permeability of the subdomain Dd, n is the unit normal vector on the
interface with a fixed direction (eventually, we will require n on Γ1,N to
be outward viewed from D1,N , respectively, but otherwise the direction
of n is arbitrary) and [ ] is the discontinuity of the enclosed quantity
across the interface. Also, we have assumed the e−iωt time dependence
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for all relevant quantities where i stands for
√−1. The PBC for a

vector field A = E, H is written explicitly as

A(x1, L/2, x3) = eiβ2A(x1, −L/2, x3),

A(x1, x2, L/2) = eiβ3A(x1, x2, −L/2)
(4)

on Sp, where β is the phase difference. In the particular case of the
incident plane wave, we have β = (0, ki

2L, ki
3L) where ki = (ki

1, ki
2, ki

3)
is the wave number vector of the incident wave. In the rest of this paper
we shall denote the solution to the above problem as

(E, H) = F (
Ei, 0, β

)
.

Similarly, we can consider another problem in which the incident wave
(E′i, H′i) impinges upon the structure from the DN side. The solution
to such problem is denoted by

(E, H) = F
(
0, E′i, β

)
.

Using PMCHWT formulation, we have the electric field integral
equation and magnetic field integral equation given bellow [14]:
∑

d

∫

Γd

t(x) ·Ei(x)dS+
∑

d

∫

Γd

∫

Γd

{
t(x) ·

[
m

(
x′

)×∇′GP
d

(
x, x′

) ]

−iωµd

[
t(x) · j (

x′
)− 1

k2
d

∇S · t(x)∇S′ · j(x′)
]
GP

d

(
x, x′

)}
dS′dS =0,(5)

∑

d

∫

Γd

t(x) ·Hi(x)dS−
∑

d

∫

Γd

∫

Γd

{
t(x) ·

[
j
(
x′

)×∇′GP
d

(
x, x′

) ]

+iωεd

[
t(x) ·m(

x′
)− 1

k2
d

∇S · t(x)∇S′ ·m(x′)
]
GP

d

(
x,x′

)}
dS′dS =0,(6)

where j(x) and m(x) are the electric and magnetic currents on the
interface defined by

j(x) = n̂(x)×H(x), m(x) = E(x)× n̂(x), (7)
n̂ is the unit normal vector directed outward viewed from Dd; t(x)
is the tangential test function; ∇S · v = ∇ · v − n̂ · ∂v/∂n̂ denotes
the tangential derivative of v(x); kd = ω

√
εdµd is the wave number

of the subdomain Dd; Γd is defined by Γd = ∂Dd \ Sp. We note
that Γd includes just the interfaces between Dd and its neighbouring
subdomains when Dd is an infinite one. The periodic Green’s function
GP

d for Helmholtz’ equation is given by [10].

GP
d

(
x, x′

)
=

∑

ω∈L

eikd|x−x′−ω|

4π|x− x′ − ω|e
iβ·ω, (8)
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where L =
{
(0, pL, qL)

∣∣ p, q ∈ Z}
is the set of lattice points.

These integral equations can be discretized using MoM with the
standard RWG basis function and Galerkin testing, and the resulting
linear equations can be solved with Krylov subspace iterative methods.
The pFMM is used to reduce the cost of matrix-vector product at
each iteration using a kernel expansion and a hierarchical recurrence
scheme. The pFMM has some differences from traditional FMM.
For example, an infinite array of the replica cells are considered in
the pFMM so that one can take the periodicity into account. A
periodic translation formula is used for the level 0 cell, which includes a
lattice sum calculated with the help of Fourier integrals and Poisson’s
summation formula. We note that metamaterial applications usually
consider periodic lengths which are much smaller than the wavelengths.
Hence, low frequency FMMs are of interest in many cases. The reader
is referred to [10, 11] for further details of pFMM.

3. SENSITIVITY ANALYSIS

In studies of metamaterials, one is interested in estimating effective
material constants of periodic structures, such as effective refractive
index, etc.. Homogenization methods such as Smith’s method [6] are
utilized to this end. Smith’s method uses the following formula to
retrieve the effective refractive index n of a metamaterial from the
transmission coefficient t and the reflection coefficient r of a layer of
periodic structure on a substrate:

n = ± 1
kd

arccos
1 + ngt

′2 − r2

[ng(1 + r) + 1− r]t′
+

2πm

kd
, t′ = teikdng , (9)

where d is the thickness of the layer, k the wavenumber of the incident
wave in vacuum, ng the refractive index of the substrate, and m an
appropriate integer. We use the selection rule of m given in [7] by
checking the continuity of Re(n) up to a long wavelength range. The
sign of arccos can be identified by using the condition Im(n) > 0.

The FOM of this metamaterial is then computed with (1). It is of
interest to find an optimal structure which maximizes the FOM thus
obtained. This motivation leads us to the computation of the reflection
and transmission coefficients and their sensitivities with respect to
shape parameters of the periodic structure.

3.1. Reciprocity and Reflection and Transmission
Coefficients

The well-known reciprocity theorem is useful in the discussion of
reflection and transmission coefficients:
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Theorem 1: Let D be a bounded domain with a smooth boundary ∂D.
Also, let E1 and E2 satisfy (the reduced) Maxwell’s equations given by

∇× (∇×E1) = −k2E1, ∇× (∇×E2) = −k2E2, (10)

where we have k = ω
√

µε. Then, we have
∫

∂D
(∇×E1) · (n̂×E2)dS =

∫

∂D
(∇×E2) · (n̂×E1)dS. (11)

As corollaries to the reciprocity, we have the following well-known
results:
Corollary 1: Let E1 and E2 satisfy Maxwell’s equations in (10) in a
subdomain Dd. Also, let E1 satisfy PBC with β periodicity and let E2

satisfy PBC with −β periodicity (i.e., (4) with β2,3 replaced by −β2,3)
if ∂Dd ∪ Sp 6= ∅. In addition, we require radiation conditions for E1

and E2 if Dd is an infinite domain. Then, we have∫

Γd

(∇×E1) · (n̂×E2)dS =
∫

Γd

(∇×E2) · (n̂×E1)dS. (12)

This corollary follows immediately from Theorem 1 and (4) if Dd is
a bounded subdomain. If the subdomain under consideration is either
of D1 or DN we introduce surfaces S∞α (α = 1 or N . We shall use α
exclusively for either 1 or N in the rest of this paper) as in Figure 1,
use Theorem 1 to the bounded domains thus obtained and then let
these surfaces tend to infinity to obtain the above corollary.

We now determine the reflection and transmission coefficients
with the help of the reciprocity. In general, the electric fields in Dα

(α = 1 or N) are written as

E =
∑
m,n

eikα
mn·xEα

mn + Eiα, α = 1 or N

where Eiα is an incident wave from Dα (EiN is zero for an incidence

Figure 1. The incident, reflected and transmitted waves.
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from D1 and vice versa), and kα
mn is a vector defined by

kα
mn =

(
±

√
kα

2 − k2
2m − k2

3n, k2m, k3n

)T

,

k2m =
2πm + β2

L
, k3n =

2πn + β3

L
, m, n ∈ Z

and Eα
mn is a vector perpendicular to kα

mn. The double sign in kα
mn

is positive for α = N and negative for α = 1. We can determine the
vectors Eα

mn as follows:
Corollary 2: We have the following results:

Fα ·Eα
mn =

ωµα

2L2
√

k2
α − k2

2m − k2
3n

∫

Γα

n̂ · (m∗α × j + j∗α ×m) dS,

where Γα is defined by Γα = ∂Dα \ (Sp
⋃

S∞α ), j and m are defined by
(7), and j∗α(= n̂×H∗α) and m∗α(= E∗α×n̂) are electric and magnetic
currents associated with the following inspection fields:

E∗α = Fαe−ikα
mn·x, H∗α = −kα

mn × Fα

ωµα
e−ikα

mn·x,

where Fα is a unit vector perpendicular to kα
mn.

To see this, we argue as in the previous corollary using the electric
field produced by Ei as E1 and the inspection fields E∗α as E2. Note
that the inspection fields E∗α and H∗α satisfy the −β periodicity and
that contributions from S∞α are non-zero in the present case.

In metamaterial applications, we may assume that the wave-
lengths in domains Dα, denoted by λα, satisfy λα > L, thus reduc-
ing the numbers of both reflected and transmitted plane waves to one.
Namely, the vectors kα

mn are real only if m = n = 0. These real vectors
are denoted by kα = kα

00 (α = 1, N). In this case, we have E1
00 = râ1

and EN
00 = tâN , respectively, where âα are unit vectors. By taking

Fα = âα, we have r = a1 and t = aN where

aα =
ωµα

2L2
√

k2
α − (ki

2)2 − (ki
3)2

∫

Γα

n · (m∗α × j + j∗α ×m) dS.

From this formula onward, we assume that the unit normal vector n
is taken equal to n̂ on Γα.

3.2. Sensitivity Analysis for r and t

We now compute the sensitivity of r and t when the shape of scatterers
changes. To this end, we consider any component (denoted by τ) of the
shape parameters τ introduced in (1). The rate of the shape change is
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defined on the boundary of subdomains and is denoted by xτ . Also, the
Eulerian rate of change of field quantities, say A, within subdomains
is denoted by Aτ .

Corollary 3: The shape sensitivity of the transmission coefficient t is
given as follows:

dt

dτ
=

iµN

2L2
√

k2
N − (ki

2)2 − (ki
3)2

∫

Γ

{s
1
ε

{
∇S · j∇S ·ψ − ω2[µ]j ·ψ

−
(s

1
µ

{
∇S ·m∇S ·ϕ− ω2[ε]m ·ϕ

)}
(xτ · n)dS, (13)

where Γ is defined by Γ =
∑

d Γd; j = n ×H and m = E × n are the
electric and magnetic currents associated with (E, H) = F(Ei, 0, β)
with Ei = Êieiki·x; ψ = n ×G and ϕ = F × n are the electric and
magnetic currents associated with the electromagnetic field (F, G) =
F(0, E∗i, −β) with E∗i = âNe−ikN ·x. Also, [f] is defined by
[f] = f− − f+ where f+ indicates the limit on Γ from the side into
which n points and f− the opposite limit.

Proof. The reader is referred to Appendix A for a proof.

Similarly, the sensitivity of the reflection coefficient r can be
evaluated by

dr

dτ
=

iµ1

2L2
√

k2
1 − (ki

2)2 − (ki
3)2

∫

Γ

{s
1
ε

{
∇S · j∇S ·ψ′ − ω2[µ]j ·ψ′

−
(s

1
µ

{
∇S ·m∇S ·ϕ′ − ω2[ε]m ·ϕ′

)}
(xτ · n)dS, (14)

where ψ′ and ϕ′ are the electric and magnetic currents associated
with the electromagnetic field (F′, G′) = F(E∗i, 0, −β) with E∗i =
â1e−ik1·x.

Specifically, when the scatterer is symmetric with respect to x3

axis and the incident wave Ei is polarized in x2 direction and is of
normal incidence, we have ki = (k1, 0, 0)T = −k1, â1 = Êi = e2 and,
hence, ψ′ = j and ϕ′ = m.

4. NUMERICAL RESULTS

In this section, we validate our formulation for AVM via a simple test
problem where an analytical solution is available. We then apply our
method to an optimal design of an optical metamaterial having a DF



Progress In Electromagnetics Research, Vol. 127, 2012 57

structure, in which we maximize the FOM while keeping the effective
refractive index negative. For the calculation, we use FUJITSU HX600
supercomputer of Academic Center for Computing and Media Studies
of Kyoto University. The CPU of this computer is AMD Quad
Core Opteron, 2.3 GHz. The code is OpenMP parallelized and linear
equations in pFMM are solved with FGMRES [15] with the relative
error of 10−3 used as the criterion of convergence. A free software
GMSH is used to generate the surface mesh.

4.1. Validation of AVM

In order to check the accuracy of our AVM computation, we use a
dielectric slab on a glass substrate as a model for validation, i.e., we
consider a layer of dielectric material between vacuum and an infinite
glass substrate. The refractive index of slab and substrate are 1.65
and 1.51 respectively. The incident wave is a plane electromagnetic
wave of the normal incidence from the vacuum side; the wavelength
in vacuum is λ = 824 nm; the thickness of slab is τ ; the periodic
length is L = 600 nm. The interface is discretized into uniform isosceles
right triangle meshes with side lengths of L/30. The gradient dt/dτ
evaluated with AVM and that obtained with analytical solution of t(τ)
are compared in Figure 2, where the origin is defined at the incident
surface. From this figure, we can see that the gradients calculated by
AVM have a good agreement with analytical results.

4.2. Shape Optimization of Metamaterials

We now proceed to the shape optimization problem. We consider a DF
structure shown in Figure 3, which includes the top view (inset) and the
detail and mesh for the unit cell. This structure consists of two silver
layers having the thickness of τ1 separated by a dielectric layer having
the thickness of τ2. The structure is perforated periodically with a
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Figure 2. AVM and analytical results of dt/dτ for dielectric slab.
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Figure 3. A periodic cell of DF-grating and its interface mesh.

periodic length of L = 300 nm in both x2 and x3 directions. The holes
are rectangular and parallel to x2 and x3 axes. The line widths of the
silver film in x2 and x3 directions are denoted by τ3 and τ4, where x1,
x2 and x3 axes are in the directions of k, E and H shown in Figure 3.
This structure is on a semi-infinite glass substrate, and the rest of the
space is void. We consider an incident plane wave of normal incidence
from the vacuum side, whose electric field is polarized in x2 direction
and whose wavelength in vacuum is λ = 780 nm. This structure is
close (but not identical) to the one considered by Dolling et al. [3].
For the purpose of comparison, we use the same material parameters
as have been used by Dolling et al. Namely, the refractive indices of
glass substrate and MgF2 dielectric layer are 1.5 and 1.38, and the
plasma and collision frequencies for silver are ωp = 1.37 × 1016 (1/s)
and ωc = 9.0× 1013 (1/s) in the Drude model, respectively. We follow
Dolling et al. to take ωc much larger than the bulk metal value found
in [16], considering the surface roughness.

In the optimization, the object function is defined as

min
τ

J = −FOM + 104 max{Re(n) + 0.1, 0}. (15)

The 2nd term is the penalty which keeps Re(n) ≤ −0.1. The initial
guesses for τi (i = 1, . . . , 4) are chosen such that this condition for
Re(n) is satisfied. Also, the shape parameters are constrained in
τi ∈ (Li

1, Li
2) using new parameters σi defined by

τi =
Li

2 − Li
1

π
tan−1 σi +

Li
2 + Li

1

2
.

Design variables are updated iteratively by the limited memory version
of BFGS method (LM-BFGS) [17] with the Armijo condition for the
linear search. This process requires the evaluation of the gradient
dJ/dτ , which can be obtained from (13) and (14) and the evaluation
of xτ · n in these formulas is easy. When the shape parameters are
updated at each linear search and LM-BFGS iteration step, a new
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surface mesh can be generated automatically by GMSH. A sample
mesh for the unit cell of the DF grating structure is given in Figure 3.

4.2.1. Verification

We first test the AVM calculation of dJ/dτ . Assume that the
thicknesses of silver and dielectric layers are τ1 = 52 nm and τ2 =
15nm, and the line widths of silver films at x2 and x3 directions are
τ3 = 126 nm and τ4 = 58nm, respectively. We choose 4 different
meshes (lc/L = 0.02, 0.015, 0.01 and 0.0075) to compare the accuracy
of AVM and finite difference, where lc is a mesh parameter roughly
equal to the average edge length of patches. Central difference
(f(τ+ε/2)−f(τ−ε/2))/ε is used in finite difference with ε = 10−4L.
Derivatives calculated by AVM and finite difference for DF grating
are listed in Table 1. As we can see from Table 1, the gradients
calculated by finite difference and AVM have some difference, but they
converge to the same values as one refines the mesh. As a matter of
fact, Table 1 shows that the convergence of AVM results is faster than
that of finite difference as one refines the mesh. Therefore, one may
expect that the gradient evaluated by AVM is more accurate than the
finite difference results obtained with the same mesh, and that AVM
can meet a practical accuracy requirement with a coarser mesh than
finite difference. Indeed, the AVM results with lc = 0.015L is accurate
to within 6% of those with lc = 0.0075L. A similar conclusion has been
reached by Veronis et al. [18] for a sensitivity analysis of nanophotonic
devices using AVM.

Table 1. AVM and finite difference (FD) results with different meshes.

lc/L dJ/dτ1 dJ/dτ2 dJ/dτ3 dJ/dτ4

0.02 4.18 −29.76 −0.59 7.37
0.015 4.24 −29.90 −0.69 7.10

AVM 0.01 4.17 −30.04 −0.66 7.15
0.0075 4.15 −30.09 −0.65 7.17
0.02 4.32 −30.69 −0.95 6.75
0.015 3.78 −30.53 −0.87 6.82

FD 0.01 4.10 −30.20 −0.63 6.97
0.0075 4.13 −30.11 −0.65 7.13
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4.2.2. Shape Optimization

We now apply the methods developed so far to the optimization
problem. We carry out this optimization in three stages in order to
reduce the run time. Namely, we start from the initial guess using a
coarse mesh with lc = 0.05L. In the second stage, we repeat the process
in the first stage using the final result of the first stage as the initial
guess and a medium mesh obtained with lc = 0.02L. The result of the
second stage gives a fairly good initial guess, with which we switch to
a fine mesh (lc = 0.015L) so that we can maximize FOM with higher
accuracy. The convergence criterion for the LM-BFGS optimization
method is ‖gk‖2 ≤ 10−3 in the third stage, while we terminate first
and second stages when the object function ceases to increase.

The FOM obtained at each iteration step is shown in Figure 4,
and the shape parameters at the initial, (two) switching and final steps
are given in Table 2. The refractive index and FOM of the DF grating
with the optimal shape parameters in Table 2 at different wavelengths
are shown in Figure 5.
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Figure 4. Convergence of FOM with LM-BFGS.
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Table 2. Shape parameters at initial, switching and final steps, in nm.

step τ1 τ2 τ3 τ4

1 52 15 126 58
19 63.802 15.022 117.582 55.405
23 66.315 15.035 117.804 52.510
34 65.473 15.159 118.333 51.732

From Figure 4, we can see that FOM increases steadily when shape
parameters are updated. At steps 19 and 23, we observe switching error
since we change meshes. At the final step the maximum FOM reaches
1.166 at 780 nm, where n = −0.553 + 0.474i. In Figure 5, we can see
that the NIM spectral range is 755–806 nm, and the maximum FOM
is reached also at 780 nm, where FOM is maximized.

Typical run time and the number of FGMRES iterations for one
solution of boundary integral equations are about 3 minutes and 105
with the coarse mesh with lc = 0.05L (4587 edges) and about 47
minutes and 193 with the fine mesh with lc = 0.015L (55857 edges).
The total run time for the whole optimization is about 2.7 days and
the amount of memory use is about 8 GB.

In [3], Dolling et al. could realize an FOM of 0.5 at 780 nm with a
slightly distorted rectangular hole. Compared with their result, our
final FOM is more than 2 times larger, so the shape optimization
method seems to be feasible and effective in improving FOM. This
result clearly shows that small changes of the thickness of each layer
and the shape size of the rectangular hole have a large influence on
the loss of metamaterial. However, the implication of this result in
real DF structures may need careful assessment since the fabrication
of nanoscale structures still has limited precision.

5. CONCLUDING REMARKS

• In this paper, we have discussed shape derivatives of electromag-
netic fields produced by 2-periodic structures. The shape deriva-
tives of the farfields are calculated with AVM, and the forward
and adjoint problems of AVM are solved with pFMM. AVM is
more efficient than finite difference since AVM solves Maxwell’s
equations twice no matter how many shape parameters one may
have. AVM is found useful for the shape design of negative-index
metamaterial with multi-parameters.

• In PMCHWT formulation it is very important to use good
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preconditioners. The present investigation followed [10] to
use the nearfield contribution of the system matrix computed
explicitly in FMM as the preconditioner. Unfortunately, however,
this preconditioner is not efficient enough in the metamaterial
applications to carry out the whole optimization with the fine
mesh only. The use of other preconditioners such as those based
on Calderon’s formulas [19] will be a future research subject.

• A preliminary test shows that the use of the steepest descent
method in the first stage of the optimization may further decrease
the run time. An investigation along this line is under way.

ACKNOWLEDGMENT

This work is funded partly by Grand in Aid for Scientific Researches
of Ministry of Education, Culture, Sports, Science and Technology,
Japan. The authors would like to express their gratitude to
Mr. Y. Kurami of Nomura Research Institute since this work is based
on his work carried out in Kyoto University while he was a graduate
student. Acknowledgement is also due to Prof. T. Ishihara of Tohoku
University for his guidance and discussions.

APPENDIX A. A PROOF OF COROLLARY 3

This Appendix presents a proof of Corollary 3.
We first note that (Eτ , Hτ ) satisfies Maxwell’s equations and that

dt/dτ and dr/dτ are the magnitudes of Eτ in the far field. We can
therefore apply Corollary 2 to (Eτ , Hτ ) to obtain

dt

dτ
=

ωµN

2L2
√

k2
N − (ki

2)2 − (ki
3)2

∫

ΓN

n · (m∗N × jτ + j∗N ×mτ

)
dS,

where m∗N and j∗N are defined in Corollary 2. This is followed by a
repeated use of Corollary 1, which yields

dt

dτ
=

ωµN

2L2
√

k2
N − (ki

2)2 − (ki
3)2

∫

Γ
n · (ϕ× [jτ ] + ψ × [mτ ]) dS,

where
[jτ ] = [n×Hτ ], [mτ ] = [Eτ × n].

On the other hand, we use (3) to obtain
[mτ ] = iω[µ](j× n)(xτ · n)− (∇S × [E])(xτ · n),
[jτ ] = −iω[ε](m× n)(xτ · n) + (∇S × [H])(xτ · n).
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In these formulae, the tangential derivatives apply to all the terms to
the right of them. Substitution of these results in (13), followed by the
use of integration by parts, gives the desired results.
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