Vol. 39
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-02-20
New Class of Surface Magnon Polaritons in Enantiomeric Antiferromagnetic Structures
By
Progress In Electromagnetics Research B, Vol. 39, 55-69, 2012
Abstract
A novel class of surface magnon polaritons supported in identical enantiomeric antiferromagnetic structures is presented. The surface waves arise due to bianisotropy. The existence of two distinct surface modes with unusual dispersion and polarization properties is predicted. The role of losses is investigated and the propagation length of the surface waves is determined.
Citation
Roland Tarkhanyan, "New Class of Surface Magnon Polaritons in Enantiomeric Antiferromagnetic Structures," Progress In Electromagnetics Research B, Vol. 39, 55-69, 2012.
doi:10.2528/PIERB12010705
References

1. Mills, D. L. and E. Burstein, "Polaritons: The electromagnetic modes of media," Rep. Prog. Phys., Vol. 37, 817, 1974.
doi:10.1088/0034-4885/37/7/001

2. Borstel, G., H. Falge, and A. Otto, "Surface and bulk polaritons observed by attenuated total reflection," Springer Tracts Modern Physics, Vol. 74, 107, 1974.
doi:10.1007/BFb0041387

3. Grunberg, P. and F. Metawe, "Light scattering from bulk and surface spin waves," Phys. Rev. Lett., Vol. 39, 1561, 1977.
doi:10.1103/PhysRevLett.39.1561

4. Borovik-Romanov, A. S. and N. M. Kreines, "Brillouin-Mandelstam scattering from thermal and excited magnons," Phys. Rep., Vol. 81, 353, 1982.
doi:10.1016/0370-1573(82)90118-1

5. Agranovich, V. M. and D. L. Mills (eds.), Surface Polaritons,, Nord-Holland, 1982.

6. Cottam, M. G. and D. R. Tilley, Introduction to Surface and Superlattice Excitations, Cambridge University Press, Cambridge, 1989.
doi:10.1017/CBO9780511599804

7. Otto, A., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., Vol. 216, 398, 1968.
doi:10.1007/BF01391532

8. Raether, H., Surface Plasmons, Springer-Verlag, Heidelberg, 1988.

9. McGilp, J. F., D. Weaire, and G. H. Patterson, Epiooptics: Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces, Springer-Verlag, Berlin, 1995.

10. Roshan Entezar, S., "Simultaneous TE and TM surface polaritons in a bilayer composed of a single-negative materials," Progress In Electromagnetics Research M, Vol. 7, 179-192, 2009.
doi:10.2528/PIERM09051102

11. Lehmayer, A. and L. Merten, "Magnon-polaritons and magneticreststrahlen-bands of uniaxial antiferromagnetic crystals," J. Magn. Magn. Mater., Vol. 50, 32, 1985.
doi:10.1016/0304-8853(85)90083-6

12. Thibaudeau, C. and A. Caille, "Magnetic polaritons of a semi-infinitive uniaxial antiferromagnetic," Solid State Commun., Vol. 87, 643, 1993.
doi:10.1016/0038-1098(93)90130-F

13. Tarkhanyan, R. H., "Propagation of surface polaritons and total electromagnetic wave transmission through layered structures," Intern. J. of Infrared and Millimeter Waves, Vol. 15, 739, 1994.
doi:10.1007/BF02096487

14. Jensen, M. R., T. J. Parker, K. Abraha, and D. R. Tilley, "Experimental observation of magnetic surface polaritons by attenuated total reflection," Phys. Rev. Lett., Vol. 75, 3756, 1995.
doi:10.1103/PhysRevLett.75.3756

15. Gurevich, A. G. and G. A. Melkov, Magnetic Oscillations and Waves, Nauka, Moscow, 1994 [Translated into English, CRC Press, Boca Ratton, 1996].

16. Rupp, G., W. Wettling, R. S. Smith, and W. Jantz, "Surface magnons in anisotropic ferromagnetic films," J. Magn. Magn. Mater., Vol. 45, 404, 1984.
doi:10.1016/0304-8853(84)90037-4

17. Tarkhanyan, R. H., "Interface polaritons and total electromagnetic wave transmission through layered structures antiferromagnet/semiconductor," Fiz. Tverd. Tela, Sov. Phys. Solid State, Vol. 32, 1913, 1990.

18. Tamine, M., "Calculations of surface magnon dispersion by means of the matching procedure," J. Magn. Magn. Mater., Vol. 153, 366, 1996.
doi:10.1016/0304-8853(95)00523-4

19. Kaganov, M., N. Pustyl'nik, and T. Shalaeva, "Magnons, magnetic polaritons, magnetostatic waves," Physics-Uspekhi, Vol. 40, 181, 1997.
doi:10.1070/PU1997v040n02ABEH000194

20. Tarkhanyan, R. H. and N. K. Uzunoglu, "Propagation of electromagnetic waves on lateral surface of ferrite/semiconductor superlattice at quantum hall-effect conditions," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1263-1264, 2000.
doi:10.1163/156939300X01193

21. Das, T. K. and M. G. Cottam, "Surface magnetic polaritons in ferromagnetic and antiferromagnetic cylindrical tubes," J. Appl. Phys., Vol. 103-07B104, 2008.

22. Gunawan, V. and R. L. Stamps, "Surface and bulk polaritons in a PML-type magnetoelectric multiferroic with canted spins: TE and TM polarization," J. Phys.: Condens. Matter, Vol. 23, 105901, 2011.
doi:10.1088/0953-8984/23/10/105901

23. Kamenetskii, E. O., "Theory of bianisotropic crystal lattices," Phys. Rev. E, Vol. 57, 3563, 1998.
doi:10.1103/PhysRevE.57.3563

24. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353, 2004.
doi:10.1126/science.1104467

25. Wang, B., W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis , "Surface waves in photonic crystal slabs," Phys. Rev. B, Vol. 74, 195104, 2006.
doi:10.1103/PhysRevB.74.195104

26. Hassani, A., B. Gauvreau, M. Febri, A. Kabashin, and M. Skorobogatiy, "Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for applications in the visible and near-IR," Electrodynamics, Vol. 28, 198, 2008.

27. Gao, J., A. Lakhtakia, and M. Lei, "Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness," Phys. Rev. A, Vol. 81, 013801, 2010.
doi:10.1103/PhysRevA.81.013801

28. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihili," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356

29. Moussa, R., T. Koschny, and C. M. Soukoulis, "Excitation of surface waves in a photonic crystal with negative refraction: The role of surface termination," Phys. Rev. B, Vol. 74, 115111, 2006.
doi:10.1103/PhysRevB.74.115111

30. Plum, E., J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.035407

31. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "Field equations, Huygens's principle, integral equations and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media," J. Opt. Soc. Amer. A, Vol. 5, 175, 1988.
doi:10.1364/JOSAA.5.000175

32. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isoropic Media, Artech House, Inc., Norwood, MA, 1994.

33. Tarkhanyan, R. H. and N. G. Niarchos, "Nonradiative surface electromagnetic waves at the interface of uniaxially bianisotropic media," Phys. Status Solidi B, Vol. 248, 1499, 2011.
doi:10.1002/pssb.201046374

34. Tarkhanyan, R. H., "Surface plasmon polaritons in enantiomeric chiroplasmonic structures due to bianisotropy," Optical Materials Express, Vol. 1, 742, 2011.
doi:10.1364/OME.1.000742

35. Camley, R. E. and D. I. Mills, "Surface polaritons on uniaxial antiferromagnet," Phys. Rev. B, Vol. 26, 1280, 1982.
doi:10.1103/PhysRevB.26.1280