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NEW CLASS OF SURFACE MAGNON POLARITONS
IN ENANTIOMERIC ANTIFERROMAGNETIC STRUC-
TURES

R. H. Tarkhanyan*

Institute of Radiophysics and Electronics, Ashtarak-2 378410, Armenia

Abstract—A novel class of surface magnon polaritons supported in
identical enantiomeric antiferromagnetic structures is presented. The
surface waves arise due to bianisotropy. The existence of two distinct
surface modes with unusual dispersion and polarization properties is
predicted. The role of losses is investigated and the propagation length
of the surface waves is determined.

1. INTRODUCTION

One of the most actual directions of modern solid-state spectroscopy
is associated with surface polaritons. Surface waves propagate along
an interface between two different media and are characterized by
the fields exponentially decaying for increasing distances from the
interface. Surface polaritons represent mixed excitations consisting
of surface electromagnetic waves and one (or more) of infrared-active
solid state excitations: surface optical phonons, plasmons, excitons, or
magnons [1–6]. For historical, theoretical and experimental aspects of
surface polaritons we refer to [7–15].

Among various types of surface polaritons, the surface magnon
polaritons (SMP) propagating along an interface between a magnetic
medium and other magnetic or nonmagnetic one, play an important
role and represent a highly dynamic research area [16–22]. At present,
SMP are widely used in several areas of science and technology,
particularly in near-field spectroscopy of magnetic materials as well
as in spintronic devices. Usually, SMP occur at a planar interface
of different materials, within definite frequency intervals and only in
the case when magnetic permeability of one of the contacted media is
negative.
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Recent development in SMP applications at the interface of a
negative-index metamaterial and a conventional medium has generated
a considerable interest in surface waves in complex electromagnetic
materials such as photonic crystals and bianisotropic media [23–
31]. Among the complex media, bi-isotropic and bianisotropic
materials which exhibit right- or left-handedness and magnetoelectric
coupling are one of the most challenging substances because of the
essential role of the cross polarizability effects in their electromagnetic
behavior [31, 32]. In Ref. [33], the possibility of the existence of
lossless surface electromagnetic waves guided by the interface between
two transparent enantiomeric chiral media has been shown in the
absence of frequency dispersion. In recent work [34], the properties
of surface plasmon polaritons at an interface between enantiomeric
chiroplasmonic media have been investigated. Surface waves predicted
in [33] and [34] are caused by bianisotropy and are absent in the case
of enantiomeric bi-isotropic media.

The purpose of this paper is to show the possibility of existence of
a new class of SMP propagating along a planar interface between two
identical uniaxially bianisotropic antiferromagnetic media (AFM), one
of which is a mirror image of the second one. So as not to complicate
the analysis taking into account magnon-plasmon coupling effects [35],
we will restrict ourselves to consideration of insulating AFM. We will
show that even in this relatively simple case, the predicted modes of
SMP possess unusual dispersion and polarization properties and can
exist at frequencies for which the real part of the magnetic permeability
is positive.

The plan of the paper is as follows. In Section 2, the field structure
of evanescent partial waves is investigated, dispersion relations and
polarization properties of the SMP are described. Section 3 discusses
the existence conditions and dispersion curves of SMP in nondissipative
case. Effect of losses is examined in Section 4. Finally, conclusions are
presented in Section 5.

2. SMP AT AN INTERFACE OF ENANTIOMERIC AFM
MEDIA. PARTIAL WAVES

Let us consider a bianisotropic AFM with “easy-axis” type of magnetic
anisotropy and assume that the z = 0 plane separates a semi-infinite
AFM-medium (by definition, R-material, z < 0) from the identical
material of opposite handedness (L-material, z > 0). Optic axes in
both materials are supposed to be perpendicular to the interface plane.
The L-material is characterized by chirality admittance tensor [31, 32]

ξ̂L = ξuzuz, (1)
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where uz is the axial component of the unit vector. In the case of
reciprocal media ξ is assumed to be real, positive and nondimensional
constant smaller than 1. The corresponding tensor for the R-material
is given by ξ̂R = −ξ̂L. Both media are described by the same relative
permittivity tensor

ε̂ = ε⊥Î + ε‖uzuz, (2)

with real and positive constants ε‖, ε⊥ and transverse unit dyadic
Î. We assume that the sublattice saturation magnetization Ms, the
anisotropy field HA and the exchange field HE are oriented in the same
direction along the z-axis. Then dynamic permeability tensor is given
by [35]

µ̂ = µ⊥Î + µ‖uzuz, (3)

where µ‖ = 1,

µ⊥ ≡ µ(ω) = 1 +
ω2

L − ω2
T

ω2
T − (ω + iΓ)2

, (4)

ωT = γ
√

HA(HA + 2HE) (5a)

is the antiferromagnetic resonance frequency, γ is the gyromagnetic
ratio, ω the angular frequency of the waves, Γ the damping parameter

z

x

ε, µ, ξ

ε, µ, -ξ

ˆ ˆ ˆ

ˆ ˆ ˆ

Figure 1. Geometry of the problem. The region z > 0 is occupied
by L-material and the region z < 0 — by R-material (they are the
mirror image of each other). The surface wave is propagating along
the positive x-axis.
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and ωL the frequency of the long-wavelength longitudinal optical
magnons:

ωL = ωT

√
1 + χ, χ ≡ Ms/Hs, Hs = HE + HA/2. (5b)

Usually, χ ¿ 1 [35]; in the following, for estimations we assume
that χ = 0.01. Without losing generality, we can consider surface waves
which travel and are attenuated in the x-direction along the interface
(see Figure 1) so as the wave vector k = k0{n, 0, iq}, where k0 = ω/c is
the free space wave number and Req > 0. Assuming that time enters
as a factor of the form exp(−iωt) and using constitutive relations for
a bianisotropic medium

D = ε0ε̂E− ic−1ξ̂H, B = µ0µ̂H + ic−1ξ̂E, (6)

one can find evanescent solutions of the Maxwell equations

rotH = −iωD, rotE = iωB, (7)

which decrease with increasing distance from the interface plane z = 0.
In (6), ε0 and µ0 are permittivity and permeability of free space,
c = (ε0µ0)−1/2.

In each medium, at a given value of the tangential wave vector
component kx = k0n, there are two evanescent partial waves with
different values of the normal component (kz)± = ik0q±, where

q2
±=−A±

√
A2 − C, (8a)

A=ε⊥µ−(ε+µ)n2/2(1−ζ), C =ε⊥µ
[
2A−ε⊥µ+n4/ε‖(1−ζ)

]
,(8b)

ε≡ε⊥/ε‖, ζ ≡ ξ2/ε‖. (8c)

In the following we assume that ε‖ > 1, so as the parameter ζ < 1.
Setting, for example, ε‖ = 4.9 and ξ = 0.7, we obtain ζ = 0.1. The
electric field vector is a linear combination of the field vectors of both
partial waves:

EL = EL
+ exp(−k0q+z) + EL

− exp(−k0q−z) (9a)

in the space region z > 0 (the common term exp[i(k0nx − ωt)] is
emitted) and

ER = ER
+ exp(k0q+z) + ER

− exp(k0q−z) (9b)

in the region z < 0, and analogically for the magnetic field vectors.
Using the standard boundary conditions for the tangential

components of the fields in the absence of a surface current, we find two
distinct modes of SMP which are described by the following dispersion
relations:

n2 = ε‖µ1

[
µ(ω)− ε

µ(ω)− µ1

]
≡ n2

ε (10a)
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and

n2 = ε‖µ(ω)
[

µ(ω)− ε

µ(ω)− µ2

]
≡ n2

µ, (10b)

where
µ1 ≡ ε(1− ζ), µ2 ≡ ε(1− ζ)−1 (11)

and µ(ω) is given by Equation (4).
In the SMP mode described by Equation (10a) (furthermore, for

the brevity this mode is referred as ε-mode), the tangential components
of the electric field in both R- and L-materials coincide: EL±t = ER±t,
while the components of the magnetic fields are parallel but |HL±t| 6=
|HR±t|. These components are polarized elliptically:

HL
+y/HL

+x = HL
−y/HL

−x = HR
+y/HR

+x = HR
−y/HR

−x = ρ, (12a)

where
ρ = (ε‖/ξ)

[
(1− ζ)n−2

ε

(
q+ + ε⊥µq−1

+

)− µq−1
+

]
(12b)

is a complex quantity. The polarization of the field components parallel
to the (xz)-plane are described by the relations

HL
+z/HL

+x =−HR
+z/HR

+x =ρ+, HL
−z/HL

−x =−HR
−z/HR

−x =ρ−, (13a)

where
ρ± = in−1

ε

(
q± + ε⊥µq−1

±
)
. (13b)

In the second mode with dispersion relation (10b) (in the following
it will be referred as µ-mode) the properties of the electric and magnetic
fields are interchanged: the tangential magnetic field components in R-
and L-materials coincide: HL±t = HR±t, while those of the electric fields
are parallel, but |EL±t| 6= |ER±t|. These components are characterized
by elliptical polarization too:

EL
+y/EL

+x = EL
−y/EL

−x = ER
+y/ER

+x = ER
−y/ER

−x = λ, (14a)

where
λ = (ε‖/ξ)

[
(1− ζ)n−2

µ

(
q+ + ε⊥µq−1

+

)− εq−1
+

]
. (14b)

Polarizations of the field components parallel to the plane (xz) are
characterized by

EL
+z/EL

+x =−ER
+z/ER

+x =λ+, EL
−z/EL

−x =−ER
−z/ER

−x =λ−, (15a)

where
λ± = ρ±nε/nµ. (15b)
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3. SURFACE MAGNON POLARITONS IN
NONDISSIPATIVE CASE

In this section we will consider SMP in the case when the wave
dissipation can be neglected, so as the damping parameter in
Equation (4) is equal to zero and therefore the waves can be described
by real frequencies and real tangential wave vectors. Note that in this
case the polarization parameters given by Equations (12b) and (14b)
are real too. It means that tangential components of the fields are
polarized linearly and the field vectors in each partial wave can be
written as a sum of two vectors, one of which lies in the xy-plane while
the second one is parallel to the z-axis and shifted in phase by π/2 (or
−π/2) with respect to the first vector. Besides, both partial waves can
be true evanescent waves if normal components of the wave vectors
are pure imaginary quantities: Imq± = 0. According to Equation (8),
such a situation is only possible if the following conditions are fulfilled
simultaneously:

A < 0, 0 < C < A2. (16)

Furthermore in this section we restrict ourselves to the
consideration of the lossless SMP for which unequalities (16) are
fulfilled. We will examine dispersion properties of the ε- and µ-modes
separately.

3.1. ε-modes

Using Equation (4) with Γ = 0, the dispersion law (10a) for ε-mode
can be rewritten as

n2
ε = n2

ε∞
(
ω2 − ω2

1

)
/

(
ω2 − ω2

2

)
, (17)

where

n2
ε∞ ≡ ε‖µ1(1− ε)/(1− µ1), (18a)

ω2
1 =

(
ω2

L − εω2
T

)
/(1− ε), (18b)

ω2
2 =

(
ω2

L − µ1ω
2
T

)
/(1− µ1). (18c)

According to Equation (17), the wave is cutoff (kx = 0) at ω = ω1

and has a resonance (kx →∞) at ω = ω2. It is evident that cutoff and
resonance frequencies exist only if the expressions on the right-hand
side of the corresponding Equation (18b) or (18c) are positive. Note
that conditions (16) for ε-modes are only fulfilled simultaneously if

µ(ω) < µ1. (19)

It means that the existence of lossless SMP is possible not only in
frequency range ωT < ω < ωL, where µ(ω) < 0, but also at frequencies
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Figure 2. Dispersion curves of the lossless SMP (solid line) and bulk
(Brewster) waves (dashed) in the case ε < 1.

for which µ(ω) ≥ 0, namely: in the range ωL ≤ ω < ω2 if µ1 < 1, in
the region ω ≥ ωL if 1 ≤ µ1 ≤ 1+χ, and in the regions ω < ω2(< ωT ),
ω ≥ ωL if µ1 > 1 + χ. However, condition (19) is not sufficient for the
wave existence: it can only be propagating if the right hand side of
Equation (17) is positive. The precise regions of existence as well as
the dispersion curves of the waves ω = ω(kx) are shown in Figures 2–4
in five different intervals of change of the parameter ε = ε⊥/ε‖.

In the case when ε < 1 (see Figure 2) there are two branches
with n2

ε > 0. The high-frequency branch as well as the part of the
low-frequency branch with ω < ωT correspond to the bulk (Brewster)
waves with real value of the normal wave vector component kz. It
means that both attenuation constants q+ and q− are pure imaginary
(A > C > 0) and thus describe magnon polaritons which are not bound
with the interface.

The dispersion curve of SMP (solid curve) begins at the point
(ckmin/nε∞, ωT ), where

ckmin = ωT [ε⊥(1− ζ)]1/2, (20)
and approaches asymptotically to the straight line ω = ω2 with
increasing kx. Thus, the SMP exist in the tangential wave number
region

kx > kmin (21)
and in the frequency range

ωT < ω < ω2. (22)
In the case of Figure 3(a), when 1 < ε < 1 + χ, both ω2

1 and
n2

ε∞ are negative, so as there is a single branch with n2
ε > 0 and the
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Figure 3. Dispersion curves in the cases (a) 1 < ε < 1 + χ and (b)
1 + χ < ε < (1− ζ)−1.
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Figure 4. Dispersion curves (solid lines) in the intervals (a) 1 < µ1 <
1 + χ and (b) µ1 > 1 + χ.

dispersion curve begins at ω = 0. Unlike that, in the next interval
1 + χ < ε < (1 − ζ)−1, where µ1 < 1, the dispersion curve begins at
cut-off frequency ω1 (see Figure 3(b)). In both these cases, the section
of the dispersion curve corresponding to SMP is given by the same
Equations (21), (22).

It is easily to see that in the interval of ε(1 − ζ)−1 < ε <
(1 + χ)(1− ζ)−1, that is, when 1 < µ1 < 1 + χ (Figure 4(a)), the wave
has no resonance frequency (ω2

2 < 0). The dispersion curve begins at
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cut off frequency ω = ω1 and for large values of kx À kmin behaves
asymptotically as a linear function ω = ckx/nε∞. The frequency region
of existence is given by

ω > ωT . (23)

Finally, in the case ε > (1+χ)(1−ζ)−1 (or µ1 > 1+χ, Figure 4(b))
there are again two branches with n2

ε > 0 but, unlike the case of
Figure 2, the surface wave exists for all values of kx and for any
frequency in the region

ω < ω2. (24)

3.2. µ-modes

Dispersion law (9b) for lossless µ-modes can be rewritten in the form

n2
µ =

n2
µ∞

(
ω2 − ω2

1

) (
ω2 − ω2

L

)
(
ω2 − ω2

3

) (
ω2 − ω2

T

) , (25)

where

n2
µ∞ = ε‖(1− ε)/(1− µ2), (26a)

ω2
3 =

(
ω2

L − µ2ω
2
T

)
/(1− µ2), (26b)

µ2 and ω1 are given by Equations (11) and (18b), respectively.
The wave has two cutoff frequencies at ω = ωL and ω = ω1 if

ε < 1 or ε > 1 + χ, and only one cutoff (ω = ωL) if 1 < ε < 1 + χ.
As to the resonance frequencies of the wave, there is a single

resonance at ω = ωT if 1 < µ2 < 1 + χ, and an additional one
at ω = ω3 if µ2 < 1 or µ2 > 1 + χ. It is important to note
that according to Equation (10b), the wave exists (n2

µ > 0) only at
frequencies for which µ(ω) is positive. It means that the frequency
range ωT < ω < ωL is forbidden for the propagation of the wave. Note
also that conditions (16) can only be fulfilled simultaneously if

µ(ω) > µ2. (27)

Consequently, the limits of the frequency regions of existence as
well as the number of such regions depend on the value of the parameter
µ2. In fact, the wave exists in two different regions

ω < ωT , ω > ω3(> ωL), (28a)

if µ2 < 1 (see Figure 5(a)), in the region ω < ωT if 1 ≤ µ2 ≤ 1 + χ
(Figure 5(b)) and in the range

ω3 < ω < ωT , (28b)
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Figure 5. Dispersion curves of the µ-modes in the cases (a) µ2 < 1,
(b) 1 ≤ µ2 ≤ 1 + χ and (c) µ2 > 1 + χ.

if µ2 > 1 + χ and ε > 1 + χ (Figure 5(c)). In Figure 5(a), there is a
single branch at kx < k1 and three branches at kx > k1, where

k1 ' $

c

√
ε‖(1− ε)g

1− µ2
, (29)

$ ' ω3


1 +

χ
(
1 + 4µ2

√
ζ(1− ε)−1

)

2(1− µ2 + χ)




1/2

, (30)

g =
$2 − (

ω2
L + ω2

1

)
/2 +

(
$2 − ω2

L

) (
$2 − ω2

1

)
/2$2

$2 − (
ω2

T + ω2
3

)
/2

. (31)

The low-frequency branch begins at ω = 0 and exists for all values
of kx while both high-frequency branches begin at ω = $ and exist only
for kx > k1. With increasing kx, the dispersion curve of the highest
branch increases monotonically and approaches asymptotically to the
straight line ω = ckx/nµ∞ while that of the middle branch decreases
and approaches asymptotically to the straight line ω = ω3. Thus, in
the range ω3 < ω < $ SMP possess anomalous dispersion: the phase
and group velocities of the wave have opposite direction.

In the case of Figure 5(b) there is only one branch for all values of
kx. In the case of Figure 5(c), there are two branches which begin at
the point ω = $, kx = k1 and exist only in the region kx > k1, where
former $ given by Equation (31) should be replaced by

$ ' ω3

[
1+

χ
{
1 + 8(µ2 − 1)−1

[
1−µ2(ε− 1)(µ2 − 1)−1

]}

2(µ2 − 1− χ)

]1/2

. (32)
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Thus, the dispersion properties of both ε- and µ-modes of SMP are
very sensitive to the ratio ε‖/ε⊥, as well as to the value of the
parameters ζ and χ. In particular, in the case of the µ-modes the
minimum permitted value µ2 of the magnetic permeability increases
with increasing of the chirality parameter ξ, and that leads to the rough
changes in the dispersion curves shown in Figures 5(a)–(c).

4. ROLE OF THE WAVE DISSIPATION. REFRACTION
INDEX AND PROPAGATION LENGTH OF SMP

Consider now briefly the main properties of SMP in the case when
damping is taken into account. Substituting Equations (4) into (10a),
(10b) and separating into real and imaginary parts (n = n′ + in′′,
µ = µ′ + iµ′′) we obtain

n′2 =
[
β +

√
α2 + β2

]
/2, n′′ = α/2n′, (33)

where

α ≡ ε⊥ζµ1µ
′′

(µ′ − µ1)2 + µ′′2
, β ≡ ε‖µ1[µ′′2 + (µ′ − ε)(µ′ − µ1)]

(µ′ − µ1)2 + µ′′2
(34)

for the ε-mode and

α≡ε‖µ′′[|µ|2+(ε−2µ′)µ2]
(µ′−µ2)2+µ′′2

, β≡ε‖
[
(µ′+µ2ζ)|µ|2+(ε−2µ′)µ′µ2)

]

(µ′−µ2)2+µ′′2
(35)

for the µ-mode. In the absence of losses (µ′′ = 0) Equation (33)
gives, naturally, n′′ = 0 and n2 = β. Then, using expressions for β
in Equations (34), (35) and substituting µ′ = µ(ω), one can easily find
exactly the same dispersion relations (10a) and (10b) for the lossless
ε- and µ-modes, respectively. It obviously means that the Section 3
analysis is valid if the dissipation is not strong.

The relative attenuation of the waves on the wavelength distance
is given by

n′′/n′ = α
[
β +

√
β2 + α2

]−1
. (36)

Another important characteristics of the SMP is the propagation
length L(ω) — the distance where the mode power decays by a factor
of 1/e. The propagation length can be calculated using the expression

L(ω) = (2Imkx)−1 = n′/αk0. (37)

It is evident that in the absence of losses L(ω) → ∞ while the
presence of dissipation leads to a finite value of that. Besides, it leads
to a finite value of the refraction index at resonance frequencies, as well
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as to nonzero values at cutoff frequencies. Indeed, for the frequencies
far from the antiferromagnetic resonance frequency |ω − ωT | À Γ,
the propagation length can be calculating using expressions given by
Equations (17) and (25) for n′ and setting

µ′∼=
(
ω2

L − ω2
)
/

(
ω2

T − ω2
)
, µ′′∼=2Γω

(
ω2

L − ω2
T

)
/

(
ω2

T − ω2
)2 (38)

for the real and imaginary parts of µ(ω). Let us find, for example, the
propagation length of the ε-mode. Assuming that µ′′ ¿ µ1 − µ′, at
frequencies far from the resonance frequency ω2 we obtain

Lε =
(1− µ1)3/2

2k0εχζ

√
(1− ε)

(
ω2 − ω2

1

)

ε⊥(1− ζ)

(
ω2 − ω2

2

)3/2

ωΓω2
T

. (39)

The minimum value of the propagation length [that is the peak of
the absorption coefficient 2ωn′′(ω)/c] appears at ω = ω2 and is given
by

Lmin
ε =

c

ωT δ

√
1 +

√
1 + δ2

2ε⊥(1− ζ)
, (40a)

where
δ = εζχω2

T /2Γω2(1− µ1)2. (40b)

From Equation (39) is obvious that the propagation length
increases monotonically with decreasing of the chirality parameter ζ.
It is not difficult to show that such a conclusion is true for the µ-
modes too. As to finite values of the refractive index (e.g., for the
ε-mode) at resonance and cutoff frequencies, they can be obtained
using Equations (33), (34) and (38):

n′2(ω2)=
1
2
ε⊥(1− ζ)

(
1 +

√
1 +

(εζχωT /2Γ)2

(1− µ1)(1 + χ− µ1)

)
, (41a)

n′2(ω1)'
ε‖(1− ζ)(1− ε)3/2(1 + χ− ε)1/2Γ

χζωT
, (41b)

where the cutoff (ω1) and resonance (ω2) frequencies are given by
Equations (18b), (18c).

5. CONCLUSIONS

In conclusion, I have shown that two novel different modes of SMP can
travel along the planar interface between enantiomorph bianisotropic
antiferromagnetic materials of opposite handedness with optic axes
perpendicular to the interface. The surface waves possess unexpected
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dispersion and polarization properties and exist not only in the
frequency range where the transverse permeability is negative, but also
when it is positive. Moreover, one of the surface modes propagates only
if µ(ω) > µ2 > 0. The behavior of the dispersion curves, the limits of
the frequency regions of existence as well as the number of such regions
are very sensitive to the ratio of the dielectric constants along and
across the optic axis as well as to the value of the chirality parameter
ζ and magnetic parameter χ which is the ratio of the long-wavelength
longitudinal optical magnon frequency ωL and the antiferromagnetic
resonance frequency ωT . A frequency region is found, where the group
and phase velocities of the µ-mode have opposite direction. The role of
dissipation is considered, the propagation length, resonance width and
relative attenuation of the surface waves on the wavelength distance
are determined. It is shown that both the propagation length and the
resonance width increase monotonically with decreasing of the chirality
parameter.
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