Vol. 29
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-02-08
A Modified Cauchy Method Suitable for Duplexer and Triplexer Rational Models Extraction
By
Progress In Electromagnetics Research Letters, Vol. 29, 201-211, 2012
Abstract
A modified Cauchy method which generates accurate duplexer and triplexer rational models from either measurements or electromagnetic analysis is presented in this paper. The modified Cauchy method has some advantages over the conventional Cauchy method because it takes into account the relationship between the transmission coefficients of each channel filter and reflection coefficient. It is suitable for duplexer and triplexer whose channel filters are connected through resonating junction. The total least square method is used to solve the system matrix. Synthesized numerical duplexer and triplexer examples verify the method successfully.
Citation
Yong-Liang Zhang, Tao Su, Bian Wu, Jia Chen, and Chang-Hong Liang, "A Modified Cauchy Method Suitable for Duplexer and Triplexer Rational Models Extraction," Progress In Electromagnetics Research Letters, Vol. 29, 201-211, 2012.
doi:10.2528/PIERL11121209
References

1. Wang, R. and J. Xu, "Extracting coupling matrix and unloaded Q from scattering parameters of lossy filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011.

2. Wang , R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonators," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.

3. Garcia-Lamperez , A., T. K. Sarkar, and M. Salazar-Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 490-492, Oct. 2004.
doi:10.1109/LMWC.2004.834576

4. Macchiarella, G. and D. Traina, "A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filter from lossy measurements," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 243-245, May 2006.
doi:10.1109/LMWC.2006.873583

5. Traina, D. and G. Macchiarella, "Robust formulation of the Cauchy method suitable for microwave duplexers modeling," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 5, 974-982, May 2007.
doi:10.1109/TMTT.2007.895394

6. Peik, S. F., R. R. Mansour, and Y. L. Chow, "Multidimensional Cauchy method and adaptive sampling for an accurate microwave circuit modeling," IEEE Trans. on Microw. Theory and Tech., Vol. 46, No. 12, 2364-2371, Dec. 1998.
doi:10.1109/22.739224

7. Basl, P. A. W., R. H. Gohary, M. H. Bakr, and R. Mansour, "Modeling of electromagnetic responses using a robust multidimensional Cauchy interpolation technique," IET Microwaves, Antennas & Propagation, Vol. 4, No. 11, 1955-1964, 2010.
doi:10.1049/iet-map.2009.0316

8. Shaker, G. S. A., M. H. Bakr, N. Sangary, and S. Safavi-Naeini, "Accelerated antenna design methodology exploiting parameterized Cauchy models," Progress In Electromagnetic Research B, Vol. 18, 279-309, 2009.
doi:10.2528/PIERB09091109

9. Macchiarella, G. and S. Tamiazzo, "Novel approach to the synthesis of microwave diplexers," IEEE Trans. on Microw. Theory and Tech., Vol. 12, 4281-4290, Dec. 2006.
doi:10.1109/TMTT.2006.885909

10. Macchiarella , G. and S. Tamiazzo, "Synthesis of star-junction multiplexers," IEEE Trans. on Microw. Theory and Tech., Vol. 58, 3732-3741, Dec. 2010.

11. Macchiarella, G. and S. Tamiazzo, "Design of triplexer combiners for base stations of mobile communications," IEEE MTT-S Int. Microw. Symp. Dig., 429-432, Anheim, CA, May 2010.