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Abstract—A modified Cauchy method which generates accurate
duplexer and triplexer rational models from either measurements or
electromagnetic analysis is presented in this paper. The modified
Cauchy method has some advantages over the conventional Cauchy
method because it takes into account the relationship between the
transmission coefficients of each channel filter and reflection coefficient.
It is suitable for duplexer and triplexer whose channel filters are
connected through resonating junction. The total least square method
is used to solve the system matrix. Synthesized numerical duplexer
and triplexer examples verify the method successfully.

1. INTRODUCTION

In recent years, the generation of reduced-order polynomial from
measurement or electromagnetic (EM) simulated responses have been
an active topic in the filter society [1–4]. But there is few method
in the literature about how to obtain the reduced order polynomial
model of multiplexers, such as duplexer and triplexer. Cauchy method
is a well-known and effective technique for generating reduced-order
rational polynomial models from the response of a passive device [5].
The polynomial is the prerequisite of the equivalent circuit synthesis
which is a fundamental requirement for computer-aided tuning.

Some effort has also been made in order to extend the Cauchy
method to multidimensional functions, i.e., to functions of more than
one independent variable [6–8]. In [6], an effective generic approach
for computer-aided design of microwave circuits is presented. In [7],
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the authors present a robust algorithm for extracting the Cauchy
interpolation coefficients in a multidimensional rational function
modeling problem. In [8], the authors proposed an optimization
methodology suitable for the design of various antenna structures based
on Cauchy model.

Cauchy method is a fast, convenient and accurate technique to
fit rational polynomials to specified response. In [5], the conventional
Cauchy method only generates the numerator polynomial coefficients
in the first step, and the posterior reconstruction of the common set of
poles is required. The junction in [5] is a simple shunt connection of the
two filters input ports. However, the method proposed in this paper
is different from the conventional method. It generates numerator
and denominator coefficients simultaneously. The transmission and
reflection coefficients share a common set poles. The modified Cauchy
method presented in this paper guarantees the three (for duplexers) or
four (for triplexers) rational polynomials to have the same poles. And
the junction is a resonator which agrees with the physical model.

This paper is organized as follows. In Section 2, the modified
Cauchy method for duplexer is presented. This new technique is
valid either for lossless or lossy responses, and guarantees all rational
polynomials have the same poles. In Section 3, the modified Cauchy
method for triplexer is presented. In Section 4, both duplexer and
triplexer numerical examples verify the new technique separately. A
conclusion is drawn in Section 5.

2. MODIFIED CAUCHY METHOD FOR DUPLEXERS

Cauchy method is well known in the literature. A three-port network
can be described by its scattering parameters S11, S21 and S31. The
scattering parameters for the architecture shown in Fig. 1 can be
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Figure 1. Architecture of duplexer connected through common
resonating node.
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expressed in the normalized low-pass frequency domain as follows.
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S21 =
PRX (s)
D(s)

=

nzRX+nTX∑
k=0

a2ks
k

nRX+nTX+1∑
k=0

bksk

S31 =
PTX (s)
D(s)

=

nRX+nzTX∑
k=0

a3ks
k

nRX+nTX+1∑
k=0

bksk

(1)

where, nRX is the number of poles of RX channel filter, nzRX the
number of finite transmission zeros of RX channel filter, nTX the
number of poles of TX channel filter, and nzTX the number of finite
transmission zeros of TX channel filter. We could obtain following
consideration about the scattering parameters.

1. Channel filters of the duplexer share a common resonator,
because they are connected through the common resonator. The total
degree of denominator is (nRX + nTX + 1). The numerator degree of
S11 is the same as the denominator.

2. Because of the interaction between RX and TX channel
filters, the numerator degrees of S21 and S31 are nzRX + nTX and
nRX + nzTX respectively.

Given a set of Ns sample frequency points, equations in (1) can
be rewritten as




nRX+nTX+1∑

k=0

a1ks
k
i − S11(si)

nRX+nTX+1∑

k=0

bks
k
i = 0

nzRX+nTX∑

k=0

a2ks
k
i − S21(si)

nRX+nTX+1∑

k=0

bks
k
i = 0

nRX+nzTX∑

k=0

a3ks
k
i − S31(si)
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k
i = 0

, (2)

where, i = 1, 2, . . . , Ns.
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Using the matrix notation, (2-2) can be rewritten as




[VnRX+nTX+1 −S11VnRX+nTX+1]
[
a1

b

]
= 0

[VnzRX+nTX −S21VnRX+nTX+1]
[
a2

b

]
= 0

[VnRX+nzTX −S31VnRX+nTX+1]
[
a3

b

]
= 0

, (3)

where,

a1 = [a1,nRX+nTX+1 . . . a1,0]T ,

a2 = [a2,nzRX+nTX . . . a2,0]T ,

a3 = [a3,nRX+nzTX . . . a3,0]T

b = [bnRX+nTX+1 . . . b0]T ,

Sk1 = diag{Sk1(si)}, k = 1, 2, 3.

and Vm is a decreasing-power mth-order Vandermonde matrix whose
size is Ns-by-(m + 1).

The equations in (2)–(3) can be combined into one new system.
[

VnRX+nTX+1 0Ns,nzRX+nTX+1

0Ns,nRX+nTX+1+1 VnzRX+nTX

0Ns,nRX+nTX+1+1 0Ns,nzRX+nTX+1

0Ns,nRX+nzTX+1 −S11VnRX+nTX+1

0Ns,nRX+nzTX+1 −S21VnRX+nTX+1

VnRX+nzTX −S31VnRX+nTX+1

]


a1

a2

a3

b


 = 0; (4)

The total number of the unknowns is

(nRX+nTX+2+nzRX+nTX+1+nRX+nzTX+1+nRX+nTX+2),

we use the total least square (TLS) method to solve the system matrix.
In order to guarantee the system matrix has solution, the TLS method
requires that Ns must be greater than or equal to

(nRX+nTX+2+nzRX+nTX+1+nRX+nzTX+1+nRX+nTX+2−1),

that is
3 ∗ (nRX + nTX) + nzRX + nzTX + 5.

The system matrix is different from that in [5]. The coefficients
of numerators and denominator can be solved with TLS (total least
square) method simultaneously, without requiring the reconstruction
of the network poles. And the unitary condition is not strictly required.
That is to say |S11|2 + |S21|2 + |S31|2 < 1 for lossy system.
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3. MODIFIED CAUCHY METHOD FOR TRIPLEXER

The architecture of triplexer connected through common resonating
junction is shown in Fig. 2.

And the scattering parameters can be expressed as follows.
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=
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(5)

where, nRX is the number of poles of RX channel filter, nzRX the
number of finite transmission zeros of RX channel filter, nMX the
number of poles of MX channel filter, nzMX the number of finite

RX filter

MX filter

TX filterPort 1

Port 2

Port 3

Port 4

Resonating 

junction

Figure 2. Architecture of triplexer connected through common
resonating junction.
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transmission zeros of MX channel filter, nTX the number of poles of
TX channel filter, and nzTX the number of finite transmission zeros of
TX channel filter. Because channel filters share a common resonator,
the total number degree of denominator is nRX + nMX + nTX + 1.
The numerator degree of S11 is the same as the denominator. Due to
the interaction between three channel filters, the numerator degrees of
S21, S31 and S41 are nzRX + nMX + nTX, nRX + nzMX + nTX
and nRX + nMX + nzTX, respectively.

Given a set of Ns sample frequency points, equations in (5) can
be rewritten as
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a4ks
k
i − S41(si)
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bks
k
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(6)

where i = 1, 2, . . . , Ns,
Using the matrix notation, (6) can be expressed as





[VnRX+nMX+nTX+1 −S11VnRX+nMX+nTX+1]
[
a1

b

]
= 0

[VnzRX+nMX+nTX −S21VnRX+nMX+nTX+1]
[
a2

b

]
= 0

[VnRX+nzMX+nTX −S31VnRX+nMX+nTX+1]
[
a3

b

]
= 0

[VnRX+nMX+nzTX −S41VnRX+nMX+nTX+1]
[
a4

b

]
= 0

(7)

where,

a1 = [a1,nRX+nMX+nTX+1 . . . . . . a1,0]T ,

a2 = [a2,nzRX+nMX+nTX . . . . . . a2,0]T ,

a3 = [a3,nRx+nzMX+nTX . . . . . . a3,0]T ,

a4 = [a4,nRX+nMX+nzTX . . . . . . a4,0]T ,
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b = [bnRX+nMX+nTX+1 . . . . . . b0]T ,

Sk1 = diag{Sk1(si)} k = 1, 2, 3, 4.

and Vm is a decreasing-power mth-order Vandermonde matrix whose
size is Ns-by-(m + 1). The equations in (7) can be combined into one
new system.




VnRX+nMX+nTX+1 0nzRX+nMX+nTX+1 0nRX+nzMx+nTX+1

0nRX+nMX+nTX+2 VnzRX+nMX+nTX 0nRX+nzMX+nTX+1

0nRX+nMX+nTX+2 0nzRX+nMX+nTX+1 VnRX+nzMX+nTX

0nRX+nMX+nTX+2 0nzRX+nMX+nTX+1 0nRX+nzMX+nTX+1

0nRX+nMX+nzTX+1 −S11VnRX+nMX+nTX+1

0nRX+nMX+nzTX+1 −S21VnRX+nMX+nTX+1

0nRX+nMX+nzTX+1 −S31VnRX+nMX+nTX+1

VnRX+nMX+nzTX −S41VnRX+nMX+nTX+1







a1

a2

a3

a4

b


 = 0 (8)

The total number of the unknowns is

nRX+nMX+nTX+2+nzRX+nMX+nTX+1 +nRX+nzMX

+nTX+1+nRX+nMX+nzTX+1+nRX+nMX+nTX+2,

here the total least square (TLS) method is also used to solve the
system matrix, In order to guarantee the system has solution, the TLS
method requires that Ns must be greater or equal to

nRX+nMX+nTX+2+nzRX+nMX+nTX+1+nRX+nzMX

+nTX+1+nRX+nMX+nzTX+1+nRX+nMX+nTX+2−1,

that is

4 ∗ (nRX + nMX + nTX) + nzRX + nzMX + nzTX + 6.

All coefficients can be obtained only in one step.

4. NUMERICAL EXAMPLES: DUPLEXER AND
TRIPLEXER

4.1. Synthesized Test Duplexer

The synthesized scattering parameters of duplexer are used in order to
test the performance of the novel modified Cauchy method proposed in
this paper. We use the method in [9, 10] to determine the characteristic
polynomials of the test duplexer. The modified Cauchy method can
be used here to reconstruct the same polynomials. Then the rational
responses are compared between the synthesized and reconstructed
polynomials.
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Table 1. The relative error between extracted and original coefficients
of tested duplexer.

Erel (a1) Erel (a2) Erel (a3) Erel (b)
7.3268e-006 2.7197e-008 6.0128e-008 3.3395e-005

In the duplexer example, the synthesized duplexer is carried out
in a normalized frequency domain. In this example, the RX channel
filter has eight poles. The transmission zeros are −j1.221, j0.1518,
j0.2006, j0.3451, and the return loss is 22 dB. The TX channel filter
has seven poles. The transmission zeros are −j0.3761, −j0.1692,
−j0.1006, and the return loss is 22 dB. The novel approach to the
synthesis of microwave duplexer in [9] is used to obtain the original
characteristic polynomials. The number of complex unknowns (the
total number of the extracted characteristic polynomials coefficients)
of the duplexer system is 58, and the number of sampled frequency
points is 80. The synthesized duplexer response and the reconstructed
polynomial model responses are presented in Fig. 3. The red solid
lines represent the synthesized response, and other lines represent the
extracted polynomials response.

In fact, the responses obtained from the polynomials computed
with all method are different from the original one. In order to express
the difference between the two responses, the relative error is presented.
The notation Erel (x) refers to the 2-norm relative error between the
original coefficients and extracted solutions for the parameter x. the
details are shown in Table 1.

From the table above, it can be seen that the difference between
the extracted and original coefficient is so small that it can be
neglected. The example shows the validity of the modified Cauchy
method for duplexer.

4.2. Synthesized Test Trilexer

In the triplexer example, the synthesized triplexer is carried out in
a normalized frequency domain, as in [11]. The example of the test
triplexer is specified as follows: the RX channel filter has five poles.
The transmission zeros are placed at −j1.5134, j0.0104, and the return
loss is 20 dB. The MX channel filter has six poles. The transmission
zeros are placed at −j0.7454, j0.7545, and the return loss is 20 dB. The
TX channel filter has five poles. The transmission zeros are placed at
j0.2597, j1.2443, and the return loss is also 20 dB. We use the synthesis
method in [11] to obtain the original characteristic polynomials of the
triplexer. The number of complex unknowns (the total number of
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Figure 3. Attenuation and return loss of the duplexer.
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Figure 4. Attenuation and return loss of the triplexer.

the extracted characteristic polynomials coefficients) of the triplexer
system is 77, and the number of sampled frequency points is 80.

The synthesized and extracted responses are showed in Fig. 4.
The red lines represent the synthesized response, and the other lines
represent the extracted polynomial response. We can see that the
extracted polynomial response agrees with original response well. The
relative error between the original and extracted coefficients is shown
in Table 2.

We could see that there is almost no difference between the
synthesized and extracted polynomials responses. A very satisfactory
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Table 2. The relative error between extracted and original coefficients
of tested triplexer.

Erel (a1) Erel (a2) Erel (a3) Erel (a4) Erel (b)
2.5364e-007 3.7133e-010 3.8113e-011 5.3391e-010 5.2902e-007

agreement between the original and extracted coefficients can be
observed. And the relative error is very small and can be neglected.
The validity is shown in this triplexer example.

5. CONCLUSION

A modified Cauchy method suitable for microwave duplexer and
triplexer whose channel filter is connected through the resonator
junction is presented. Compared with the conventional technique,
the modified technique has two advantages: first, it can generate the
numerator and denominator coefficients in one step, without requiring
the reconstruction the common poles; second, the new method can
handle the lossy case. Two numerical examples are presented. The
extracted rational polynomials responses show the validity of this
new technique. The modified Cauchy method can also be applied
to the same type of multiplexers (channel filters connected through
a resonator junction).

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation
of China (NSFC) under project No. 60901031 and the Fundamental
Research Funds for the Central Universities No. 72005477.

REFERENCES

1. Wang, R. and J. Xu, “Extracting coupling matrix and unloaded
Q from scattering parameters of lossy filters,” Progress In
Electromagnetics Research, Vol. 115, 303–315, 2011.

2. Wang, R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang,
“Improved extraction of coupling matrix and unloaded Q from
S-parameters of lossy resonators,” Progress In Electromagnetics
Research, Vol. 120, 67–81, 2011.

3. Garcia-Lamperez, A., T. K. Sarkar, and M. Salazar-Palma,
“Generation of accurate rational models of lossy systems using the



Progress In Electromagnetics Research Letters, Vol. 29, 2012 211

Cauchy method,” IEEE Microw. Wireless Compon. Lett., Vol. 14,
No. 10, 490–492, Oct. 2004.

4. Macchiarella, G. and D. Traina, “A formulation of the Cauchy
method suitable for the synthesis of lossless circuit models
of microwave filter from lossy measurements,” IEEE Microw.
Wireless Compon. Lett., Vol. 16, No. 5, 243–245, May 2006.

5. Traina, D. and G. Macchiarella, “Robust formulation of the
Cauchy method suitable for microwave duplexers modeling,”
IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 5, 974–
982, May 2007.

6. Peik, S. F., R. R. Mansour, and Y. L. Chow, “Multidimensional
Cauchy method and adaptive sampling for an accurate microwave
circuit modeling,” IEEE Trans. on Microw. Theory and Tech.,
Vol. 46, No. 12, 2364–2371, Dec. 1998.

7. Basl, P. A. W., R. H. Gohary, M. H. Bakr, and R. Mansour, “Mod-
eling of electromagnetic responses using a robust multidimensional
Cauchy interpolation technique,” IET Microwaves, Antennas &
Propagation, Vol. 4, No. 11, 1955–1964, 2010.

8. Shaker, G. S. A., M. H. Bakr, N. Sangary, and S. Safavi-
Naeini, “Accelerated antenna design methodology exploiting
parameterized Cauchy models,” Progress In Electromagnetic
Research B, Vol. 18, 279–309, 2009.

9. Macchiarella, G. and S. Tamiazzo, “Novel approach to the
synthesis of microwave diplexers,” IEEE Trans. on Microw.
Theory and Tech., Vol. 12, 4281–4290, Dec. 2006.

10. Macchiarella, G. and S. Tamiazzo, “Synthesis of star-junction
multiplexers,” IEEE Trans. on Microw. Theory and Tech., Vol. 58,
3732–3741, Dec. 2010.

11. Macchiarella, G. and S. Tamiazzo, “Design of triplexer combiners
for base stations of mobile communications,” IEEE MTT-S Int.
Microw. Symp. Dig., 429–432, Anheim, CA, May 2010.


