1. Smirnova, E. I., C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, "Simulation of photonic band gaps in metal rod lattices for microwave applications," J. Appl. Phys., Vol. 91, No. 3, 960-968, Feb. 2002.
doi:10.1063/1.1426247
2. Sirigiri, J. R., K. E. Kreischer, J. Macuhzak, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Photonic band gap resonator gyrotron," Phys. Rev. Lett., Vol. 86, 5628-5631, 2001.
doi:10.1103/PhysRevLett.86.5628
3. Gao, X., Z. Yang, Y. Xu, L. Qi, D. Li, Z. Shi, F. Lan, and Z. Liang, "Dispersion characteristic of a slow wave structure with metal photonic band gap cells," Nuclear Instruments and Methods in Physics Research A, Vol. 592, 292-296, May 2008.
doi:10.1016/j.nima.2008.04.059
4. McCalmont, J. S., M. M. Sigalas, G. Tuttle, K. M. Ho, and C. M. Soukolis, "A layer-by-layer metallic photonic band-gap structure," Appl. Phys. Lett., Vol. 68, 2759-2761, 1996.
doi:10.1063/1.115589
5. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components ," Phys. Rev. B, Vol. 50, 16835-16844, Dec. 1994.
doi:10.1103/PhysRevB.50.16835
6. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, No. 19, 2772-2775, Nov. 1992.
doi:10.1103/PhysRevLett.69.2772
7. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 59, No. 3, 1874-1877, Jan. 1999.
doi:10.1103/PhysRevB.59.1874
8. Guo, S., F.Wu, S. Albin, and R. S. Rogowski, "Photonic band gap analysis using finite difference frequency-domain method," Optics Express, Vol. 12, No. 8, 1741-1746, 2004.
doi:10.1364/OPEX.12.001741
9. Hiett, B. P., J. M. Generowicz, S. J. Cox, M. Molinari, D. H. Beckett, and K. S. Thomas, "Application of finite element methods to photonic crystal modeling," IEE Proceedings Science, Measurement & Technology, Vol. 149, No. 5, 293-296, Sep. 2005.
10. Nicorovici, N. A., R. C. McPhedran, and L. C. Botten, "Photonic band gaps for arrays of perfectly conducting cylinders," Phys. Rev. E, Vol. 52, No. 1, 1135-1145, Jul. 1995.
doi:10.1103/PhysRevE.52.1135
11. Qiu, M. and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusion ," J. Appl. Phys., Vol. 87, No. 12, 8268-8275, Jun. 2000.
doi:10.1063/1.373537
12. Kuang, W., W. J. Kim, and J. D. O'Brien, "Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals," Journal of Lightwave Technology, Vol. 25, No. 9, 2612-2617, Sep. 2007.
doi:10.1109/JLT.2007.903827
13. Arriaga, J., A. J. Ward, and J. B. Pendry, "Order-N photonic band structures for metals and other dispersive materials," Phys. Rev. B, Vol. 65-155120, Apr. 2002.
14. Umenyi, A. V., K. Miura, and O. Hanaizumi, "Modified finite-difference time-domain method for triangular lattice photonic crystals," Journal of Lightwave Technology, Vol. 27, No. 22, 4995-5001, Nov. 2009.
doi:10.1109/JLT.2009.2027449
15. Elsherbeni, A. Z. and V. Demir, "The Finite Difference Time Domain Method for Electromagnetics with MATLAB Simulations," Scitech Publishing Inc., Raleigh, 2009.
16. Qiu, M. and S. He, "Guided modes in a two-dimensional metallic photonic crystal waveguide," Phys. Lett. A, Vol. 266, 425-429, Feb. 2000.
doi:10.1016/S0375-9601(00)00049-9