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Abstract—Two dimensional metallic photonic band gap (PBG)
structures, which have higher power handling capability, have been
analyzed for their dispersion characteristics. The analysis has been
performed using finite difference time domain (FDTD) method based
on the regular orthogonal Yee’s cell. A simplified unit cell of
triangular lattice PBG structure has been considered for the TE
and TM modes of propagation. The EM field equations in the
standard central-difference form have been taken in FDTD method.
Bloch’s periodic boundary conditions have been used by translating
the boundary conditions along the direction of periodicity. For the
source excitation, a wideband Gaussian pulse has been used to excite
the possible modes in the computational domain. Fourier transform
of the probed temporal fields has been calculated which provides the
frequency spectrum for a set of wave vectors. The determination of
eigenfrequencies from the peaks location in the frequency spectrum has
been described. This yields the dispersion diagram which describes the
stop and pass bands characteristics. Effort has been made to describe
the estimation of defect bands introduced in the PBG structures.
Further, the present orthogonal FDTD results obtained have been
compared with those obtained by a more involved non-orthogonal
FDTD method. The universal global band gap diagrams for the
considered metal PBG structure have been obtained by varying the
ratio of rod radius to lattice constant for both polarizations and
are found identical with those obtained by other reported methods.
Convergence of the analysis has been studied to establish the reliability
of the method. Usefulness of these plots in designing the devices using
2-D metal PBG structure has also been illustrated.
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1. INTRODUCTION

Photonic band gap (PBG) structures have aroused considerable
research interest primarily due to their frequency and mode selective
properties. These fascinating properties lead improved performances
of the PBG based electronic devices, both active as well as passive.
Two dimensional (2-D) PBG structures have potential application
in microwave, millimeter-wave and infrared devices, which include
waveguides, filters, resonators, antennas, planar reflectors, integrated
circuits, optical fibers, lasers, etc. [1–3]. PBG structures are also
successfully being used in the vacuum electron beam devices, such
as, gyrotrons, high gradient accelerators, multibeam reflex klystrons,
backwards wave oscillators (BWO) and, traveling wave tubes, etc. [1–
3].

PBG structures are lattices of periodic structure utilizing
dielectric, metallic or composite inclusions. These periodic structures
offer propagation of EM waves in certain frequency band known as
the propagating/pass band and no waves exist in the forbidden/stop
band, is known as “photonic or electromagnetic band gap”. Dielectric
PBG structures have been utilized in various devices for different
kind of applications. However, researches in metal photonic band gap
(MPBG) structures lead enormous important applications due to their
higher power handling capability over its dielectric counterpart. The
problem of breakdown and charging of dielectric materials restricts
its applications. On the contrary, these phenomena do not happen
in the metal due to their excellence conductibility and performs as
a nearly perfect reflector at high frequency which also minimizes
the problems of absorption [3, 4]. Moreover, in vacuum electronics
devices, operating temperature is very high which necessitates the
interaction structure’s material to sustain this temperature with
sufficient mechanical strength.

Different methods have been applied by researchers in the
past to analyze the photonic crystals. These methods include
modified plane wave expansion method (PWE) [5], transfer matrix
method (TMM) [1, 6], multiple multipole method (MMP) [7], finite-
difference frequency-domain (FDFD) method [8], finite element
method (FEM) [9] and generalized Rayleigh identity method [10],
etc.. The availability of numerous methods for the analysis of
PBG structures reflects their wide range of applications and research
interest. Some of the methods involves the plasma-like frequency
dependence and is not well suited for the calculation of photonic
band structure using finite conductivity value such as PWE method.
The other methods are cumbersome and more involved than FDTD.
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However, the finite difference frequency domain (FDFD) is another
counterpart to FDTD for band structure computation but due to some
distinct advantages of FDTD, it has been used here.

Finite difference time domain (FDTD) method is a powerful
numerical technique widely used by researchers in various fields
providing accurate results [11, 12]. The modelling of arbitrarily-shaped
structures reinforces the usefulness of FDTD method among wide
range of applications. Moreover, with the pulse excitation signal, one
can obtain both temporal as well as broadband steady-state response
with single calculation. In the non-orthogonal FDTD, the problem of
staircase error is reduced, but simultaneously, it requires coordinate
transformation and rigorous derivation. The unit cell model taken in
the present method overcomes the problem arising due to staircase
approximation and can be applied for any dimension of inclusions.
Additionally, the conventional FDTD using orthogonal mesh is simpler
in implementation as well as involves simpler equations. For most
of the other methods, computational time varies with Nα where,
α ≥ 2 and N is number of grid points, but it varies with the N
for FDTD [11]. FDTD using conventional Yee’s algorithm requires a
high spatial resolution to minimize the numerical dispersion caused by
the staircase approximation when curved inclusions/oblique surfaces
are involved. For the high spatial resolution case, the requirement of
high computational resources can be easily handled with the advent
of fast computers having large memories. The material with nonlinear
properties can be effectively treated and can be utilized in structures
containing dielectric as well as metal [13]. Furthermore, photonic
crystal with defects can be suitably realized with no additional
computational complication. The non-primitive unit cell of triangular
lattice (two circles in one unit cell for 2-D case), can be easily
implemented for band structure calculation but this unit cell provides
folded version of bands [14]. One should take primitive unit cell to
avoid such folded bands.

In the present paper, analysis of the 2-D metal PBG structures,
which find applications in high power devices, is presented for
dispersion characteristics using FDTD method. Here, a triangular
lattice PBG structure with TE and TM modes of propagation is
considered. The analysis of the dielectric PBG structure using
modified unit cell technique [14] is extended here for the metal PBG
structure. The uniform Yee cell based discretization in orthogonal
FDTD method is used for a skew lattice computational domain.
The finite conductivity value and permittivity of the metal rod are
introduced at the suitable places in the analysis. The implementation
of an easy and efficient technique of the translated boundary condition
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along the structure periodicity is described. In the present FDTD
method, a wideband initial pulse source excitation is incorporated to
initialize the computation. The monitoring of the field in time domain
and its Fourier transform are described which finally yield the complete
dispersion diagram. The dispersion characteristics of the metal PBG
structure is further interpreted for obtaining the universal global band
gap diagram which exhibits the pass band and stop band needed for
designing the devices utilizing these metal PBG crystals. The global
band gap diagrams of metal PBG crystal are calculated here for both
TM and TE modes. The band structure obtained here, through the
developed FDTD analysis for the metallic PBG structure, is compared
and is found identical with those published in the literature though
using a more complex and involved non-orthogonal FDTD method [11].
The global band gap diagrams obtained here are also found identical
with those obtained using MIT PBGSS code [1].

2. PHOTONIC BAND GAP STRUCTURE MODEL

For the analysis, typically, a 2-D metal PBG structure model
containing periodic rods in a triangular lattice in TM and TE modes
of propagation is considered. The triangular lattice structure is an
azimuthally symmetric and provides more global band gap regions
compared to the square lattice for TE mode. Dispersion diagram, i.e.,
band structure is required to determine the forbidden and pass bands of
the PBG structures. The lattice, in configuration space and reciprocal
space, is shown in Figure 1. The shaded portion shows the irreducible

(a) (b)

Figure 1. Metal PBG structure of triangular lattice, (a) in real space,
(b) its reciprocal lattice showing irreducible Brillouin zone by shaded
area.
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Brillouin zone in which Γ, X, and M are the symmetry points. The
calculation of Eigenvalues along the sides (Γ-X, X-M and M -Γ) of
Brillouin zone gives the whole frequency spectrum of that lattice with
respect to the wave vector, i.e., the dispersion characteristics.

3. FINITE DIFFERENCE TIME DOMAIN (FDTD)
ANALYSIS

The basic FDTD method involves several initial steps as the
spatial definition of the computational domain with an appropriate
distribution of physical parameter, appropriate boundary conditions,
EM fields calculation at each spatial discretization point and timestep,
an excitation source and final post processing to calculate the
desired derived results [15]. For the band structure calculation,
eigenfrequencies at the symmetry points (Γ, X, and M) and along
the Brillouin zone edges (Γ-X, X-M and M -Γ) of triangular lattice
unit cell (Figure 1) are required.

3.1. Unit Cell Discretization

First, the problem space of the finite dimension must be defined for
which analysis has to be performed. The problem space needs to be
discretized further in accordance with Courant condition [15]. The
considered modified unit cell for calculating the band structure is

Figure 2. Conductivity profile in triangular lattice unit cell for ratio
r/a = 0.2.
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discretized into uniform rectangular grids. The length of unit cell along
y-axis is

√
3/2 times the length along the x-axis in the unit cell hence

if the number of grid points along x-axis (Nx) is 80, then the number
of grid points along y-axis (Ny) would be 69, i.e., Ny =

√
3Nx/2

(Figure 2).

3.2. Material Property Distribution

Now, each grid point must be specified by appropriate material
property. Conductivity profile in the unit cell is shown in Figure 2
where half metal cylinders is at middle of one side along x-direction
and two quarter metal cylinder on the other opposite corners. The
conductivity (σ) value is 5.8 × 107 S/m for all grid points in metal
region with relative permittivity (ε) and relative permeability (µ) as
1. Rest other grid points are assigned with the material property of
vacuum (ε and µ = 1, σ = 0).

3.3. Time Updating Field Expressions

The time-dependent Maxwell’s curl equations are descretized for the
rectangular grids. FDTD updating electric (E) and magnetic (H)
field expressions can be derived using time-dependent Maxwell’s curl
equations, as [15]:

∇× ~H =
∂ ~D

∂t
+ σ ~E, ∇× ~E =

∂ ~B

∂t
.

For the 2-D case, in the discretized Maxwell’s equations, central
difference approximations are used for the space and time derivative
of the electric field and magnetic field intensities into two sets of
differential equations corresponding to the TM (E-polarization) and
TE (H-polarization) mode. The central difference based discretization
used here provides second order accuracy [15]. The above FDTD time
updating equations can be written as:
For TM mode:

En+1
z {p, q}

=
(

2ε{p, q} −∆tσ{p, q}
2ε{p, q}+ ∆tσ{p, q}

)
×En

z {p, q}+
(

2∆t

2ε{p, q}+ ∆tσ{p, q}
)

×
(

H
n+1/2
y {p, q} −H

n+1/2
y {p− 1, q}
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−H
n+1/2
x {p, q} −H
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x {p, q − 1}

∆y

)
(1)
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For TE mode:
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Here, ε and µ are the permittivity and permeability of the medium
which do not vary with the direction and hence no suffix is provided.
p and q are the index of grid point in the discretized space and defined
as {p, q} = {p∆x, q∆y}, where ∆x and ∆y are the length of each
discretized cell in x and y direction. The time t is also discretized with
time increment ∆t. n is an integer denoting time instant. The time
evolution of the fields is obtained by these time-stepping equations
with a specified source excitation in the computation domain.

3.4. Numerical Stability (Courant Criterion)

The electric and magnetic fields are sampled at discrete points both
in time as well as space. Sampling period is selected with certain
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restriction in such a way that it provides stability in solution. The
choice of time step with the space resolution leads the accuracy of
results and it is chosen in specific way to obtain the real frequency
solution which can be given by Courant-Friedrichs-Lewy (CFL)
condition as [15]:

∆t ≤ ∆tmax = (1/∆x2 + 1/∆y2)−1/2/c (7)

where, c is the velocity of light. ∆x and ∆y are the controlling factor
to have maximum allowed timestep. The timestep must be always
smaller than the maximum time step.

3.5. Source Excitation or Initial Field Distribution

To start the simulation, a non-zero projection is required which can
be provided by a source excitation or an initial field distribution. A
modulated Gaussian pulse is taken here since it is very efficient in time-
frequency resolution (Figure 3). The important feature of this type of
signal is to provide a wideband excitation which requires exciting all
possible modes in the unit cell.
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Figure 3. The modulated Gaussian pulse as excitation in (a) time
domain and (b) frequency domain.
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The waveform of the modulated Gaussian pulse can be given as:

S{t} = Amej2πft exp
[
− ((t− t0)/τ)2

]
(8)

where Am is the amplitude of the signal, τ is a parameter that
determines the width of the Gaussian pulse both in time and frequency
domain, t0 is the amount of time shift and f is the operating frequency.
Here, Am = 1, τ = 1/(8 × f), f = 1014 Hz, t0 = 0.5 × 10−12

second is taken. In the Gaussian pulse, more energy is concentrated
near the center time of the pulse and center frequency. The source
excitation should be positioned at several discretization points to excite
all possible modes. Only the mode supporting to the structure with
the Bloch boundary condition will sustain with the time and all others
will vanish. For the band structure calculation, initial field distribution
can also be used instead of source excitation with no difference in the
final results. The final band structure has no signature of its previous
history whether it was a well specified field distribution or excited with
a wideband pulse.

3.6. Boundary Condition in Unit Cell of Triangular Lattice

Fields at the boundary require satisfying the Bloch boundary condition
which can be given as:

E(r) = ejk·re(r), H(r) = ejk·rh(r) (9)

E(r + a) = ejk·aE(r), H(r + a) = ejk·aH(r) (10)

where a is lattice constant or translational vector.

Ny

Nx

x

y

Figure 4. Uniformly discretized unit cell of triangular lattice of 2-D
metal PBG for r/a ratio = 0.2.
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The scheme of boundary condition implementation along the
periodicity is depicted in Figure 4. Boundary condition along the x-
axis (p = 0 to Nx) for all grid points is straightforward and this is
obtained by translating by a and can be given as Q′ = Q×exp(−jakx)
where Q′ is the grid point at p = Nx and Q is at p = 0. The
boundary condition along the y-axis is divided into two equal parts.
First, translating the first half of the horizontal side at bottom side
(q = 0) by a/2 in positive x-axis and

√
3a/2 along positive y-direction

and can be given as:

P ′
1 = P1 × exp

[
−ja

(
kx +

√
3ky

)
/2

]

P1 = P ′
1 × exp

[
ja

(
kx +

√
3ky

)
/2

] (11)

Second half of the horizontal bottom side is translated by a/2 in
negative x-direction and

√
3a/2 in positive y-direction which can be

given as:

P ′
2 = P2 × exp

[
−ja

(
−kx +

√
3ky

)
/2

]

P2 = P ′
2 × exp

[
ja

(
−kx +

√
3ky

)
/2

] (12)

So, the field component along y-axis using Bloch condition can be
implemented for computation for all the grid points in following
manner,

U
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)
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√
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)
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]
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Nx

2
− 1

)

× exp
[
−ja

(
kx +

√
3ky

)
/2

]
(14)

and its inverse can also be derived and used. It should be noticed that
for the present analysis, the number of cells must be even otherwise
for the odd number of cells, there will be unequal distribution of cells
in the unit cell and this will significantly affect the results.
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Figure 5. (a) Temporal response of z-component of magnetic field
(Hz) and (b) its Fourier transform at Γ-point for r/a equal to 0.2 in
TE mode.

3.7. Frequency Domain Transformation and Determination
of Frequency Eigenvalue

As the FDTD evolves with time, only the modes satisfying the Bloch
boundary condition will remain in the computational domain and other
pseudo transmission modes will vanish eventually. The field values
at several arbitrary discretization points in the unit cell are recorded
to detect all the possible propagating modes. For the TE case, the
recorded Hz field at gamma point is shown in Figure 5(a). Figure 5(b)
demonstrates Fourier transform of the temporal field Hz. In the figure,
there are several peaks obtained at particular definite frequency. These
peaks provide the information about the eigenfrequencies (circles in
Figure 5(b)), i.e., the peaks of the spectral distribution correspond to
the locations of the eigenfrequencies. One must notice that only the
location of the spectral peaks is of importance not the shape. This
process is done iteratively for all set of wave vectors. Finally, keeping
these results together yield the dispersion diagram.

3.8. Defect Modes in 2-D PBG Structure

The eigenfrequencies and the field pattern in a lattice with defect can
easily be calculated by present FDTD method. A defect in a 2-D
PBG lattice can be introduced by removing one or several unit cells
of inclusions which leads to localized point or line defect (Figure 6).
Defects can also be created by replacing the inclusions with other
materials or by changing its shape [16]. For the calculation of defect
modes, a supercell (including defect) structure can be considered. The
defect band using orthogonal FDTD method can be estimated as the
following.
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Figure 6. Implementation of boundary conditions in the supercell
structures of triangular lattice with (a) point and, (b) line defect.

3.8.1. Point Defect

Supercell structure with point defect is shown in Figure 6(a) which
contains many unit cells of triangular lattice along x- and y-direction.
The whole computation domain is discretized suitably using courant
criteria (Equation (7)) and it is surrounded by a PML with thickness
corresponding to sufficient layers of the discretization grid [15].
Appropriate material property should be assigned for each grid points
according to the metal, dielectric or vacuum. The time step with
the space resolution is chosen in similar way as for band structure
calculation satisfying Courant condition (Equation (7)). FDTD time
updating electric (E) and magnetic (H) field expressions described in
Section 3.3 is used. For the excitation in the computational domain, an
appropriate wideband signal or an initial field distribution can be used.
For initial field case, the initial field should be smooth and continuous
in the whole computation space, low symmetry in order to excite all
possible defect modes and almost zero outside the defect region. For
the boundary condition to this finite sized computational domain of
supercell, we use the perfectly matched layer (PML). PML is a finite
thickness medium surrounding the computational space to create a
wave-impedance matching condition which is independent of angle and
frequencies of the wave incident on this boundary. The implementation
of the fields inside the PML can be performed using the same FDTD
technique [15]. With the time evolution, ultimately the defect modes
will exist in the computational domain and other modes will die out.
The temporal response of the field is probed in the defect at several
points in the computational space and for the spectral information;
Fourier transform of the field is calculated. The peaks of the spectral
intensity correspond to the locations of the eigenfrequencies of the
defect modes. This yields the eigenfrequencies of defect modes for a
particular defect region.
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3.8.2. Line Defect

Line defects in a lattice act as waveguide and most of the steps are
similar to that adopted in point defect case for defect bands calculation.
Here, differences include the choice of supercell structure and boundary
conditions implementation. A supercell is chosen much larger than
unit cell containing the waveguide at the center as a computational
domain (Figure 6(b)). The length of supercell along x-direction is
chosen equal to the lattice constant value while in y-direction supercell
is chosen more than 10 times of periodicity. Since, the structure is
periodic in x-direction; the periodic boundary condition (PBC) should
be assigned and in y-direction, the computation domain is surrounded
with perfectly matched layers (PML) [15]. With the time evolution,
only the proper guided modes sustain in the computation space, and
other modes will vanish. Similar to the procedure adopted in case of
point defect, eigenfrequencies of defect modes can be determined. For
Γ-M direction (Figure 1(b)), wave vector is varied and eigenfrequencies
of defect modes are recorded which finally yields the defect bands.
Even or odd guided modes can be characterized by the symmetry of
electric field with respect to the central waveguide plane [16].

4. RESULTS AND DISCUSSION

4.1. Photonic Band Structure

In the band structure calculation, large numbers of iterations (214

are sufficient enough) are taken to obtain sufficient accurate results.
Sufficient numbers of field probes located at arbitrary grid points in
unit cell are used to record all the possible eigenmodes.

(a) (b)

Figure 7. Band structure of the 2-D metallic triangular lattice for
ratio r/a is 0.2 for (a) TM and (b) TE mode. Shaded portion shows
global band gap region.
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For the metal PBG structure with triangular lattice operating
in the TM and TE modes of propagation, the obtained dispersion
diagrams using the developed FDTD technique are shown in Figure 7
for the ratio r/a is 0.2. The vertical axis shows the normalized
frequency (fa/c) and horizontal axis is wave vector (k). Here, only
few lowest eigenmodes are shown, though there exist more bands. The
band structures are in good agreement with those obtained through
non-orthogonal (NFDTD) analysis by Qiu et al. [11]. Obviously, in
case of TM mode, there is a complete band gap, i.e., zeroth order
band gap starting from zero frequency and upto a certain frequency
or cut-off frequency ((Figure 7(a)) Shaded portion). Moreover, other
higher order band gaps are also obtained. For TE mode (Figure 7(b)),
no such zeroth order band gap exists and for this r/a value (0.2), no
global band gaps are observed. For other values of r/a, there may exist
global band gap. For a range of r/a, the global band gap regions are
calculated in next section for TM and TE modes.

4.2. Calculation of Global Band Gap Diagram

Now, the global band gap diagrams for the considered metallic PBG
structure are calculated using dispersion diagram by varying r/a for
both polarization (Figures 8(a) and 8(b)). In TM mode global band
gap diagram (Figure 8(a)), the region right hand side to the diagram
is global band gap region and in the left side is pass band. TE mode
global band gap is shown in Figure 8(b), which consists several global
band gap regions. No global band gap occurs before r/a equal to
0.2. The lowest global band gap occurs between the second and third
modes of the dispersion diagram which occurs at r/a ≥ 0.35. The
second global TE band gap occurs between the third and fourth modes

(a) (b)

Figure 8. Global band gap diagram obtained for the triangular lattice
of metal PBG structure in (a) TM and (b) TE mode of propagation.
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at lower ratios of r/a than those for the lowest global TE band gap.
Some other global band gaps between higher order modes are also
observed as depicted in the figure (normalized frequency ≥ 2). This
global band gap of higher normalized frequency can be used to design
the PBG cavity operating in a higher order mode. This global band
gap diagram is identical with that obtained using MIT PBGSS code
reported by Smirnova et al. [1]. For the single mode of operation of the
PBG based waveguide or cavity, the dimension of PBG structure is
taken in such a way that the operating frequency of the desired mode
must be within the global band gap and that of for all other modes in
the pass band.

(a) (b)

Figure 9. The convergence of frequency for TM mode with r/a = 0.2
at (a) X and (b) M symmetry point.

(a) (b)

Figure 10. The convergence of frequency for TE mode with for
r/a = 0.2 at (a) X and (b) M symmetry point.
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4.3. Convergence Analysis

Convergence is an important aspect of the numerical analysis.
Figures 9 and 10 demonstrate the stability and accuracy of the results.
The convergence analysis of frequency for r/a = 0.2 and for TM and
TE mode is performed. First five bands are considered at X and M
symmetric points and their variation is observed with the number of
cells Nx (and Ny =

√
3Nx/2). For the number of grid points per lattice

Nx ≥ 20, this method shows good convergence.

5. CONCLUSION

A two dimensional metal photonic band gap structure of triangular
lattice has been analyzed for its dispersion characteristics in both TE
and TM mode of propagation due to its mode selective property.
Metal PBG structure has been chosen here for the analysis due to
its higher power handling capability over its dielectric counterpart.
The triangular lattice of metallic cylindrical rods in the background of
vacuum has been selected since this lattice provides better azimuthal
symmetry than square lattice. For metal PBG structure analysis,
FDTD method has been used which is less cumbersome and easy to
implement. The uniform Yee cell based discretization has been used.
The steps involved in calculating band structure have been illustrated.
A simplified model of primitive unit cell of triangular lattice has
been considered in the analysis. This unit cell yields the accurate
band structure not the folded bands. The implementation of periodic
boundary condition over the unit cell has been presented which is
always valid for any computing environment dimension. Staircase error
can be reduced using large number of mesh grids in the present FDTD
method and therefore large number of mesh grids have been used. In
the considered unit cell computational domain, it is easy to incorporate
the initial field distribution or point excitation source. A wideband
Gaussian source has been used in our approach. The procedure of
eigenfrequencies determination from the frequency spectrum of time
monitored field has been demonstrated. Photonic band structure
obtained from FDTD is compared with the non-orthogonal method
and is found in close agreement. The usefulness of universal global
band gap curves in the photonic crystal device for TM and TE modes
has been discussed. Effort is made to describe the estimation of
defect bands introduced in the PBG structures. Convergence of the
present analysis is also performed and found that sufficient numbers of
mesh cells are required for good convergence. Our approach provides
good convergence with accurate results. It is hoped that the present
dispersion study of the metal PBG structure would be useful for the
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designing of the high power devices incorporating PBG structures as
its RF propagating structures.
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