Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-16
Numerical and Experimental Study of the Hydrodynamic Phenomena in Heterogeneous Sea Surface, EM Bistatic Scattering
By
Progress In Electromagnetics Research B, Vol. 35, 151-166, 2011
Abstract
In this paper, we will study the influence of nonlinear waves (breaking waves) on the EM signature of a sea surface in bistatic case (forward propagation). Indeed, we will start the temporal numerical analysis of the scattering coefficient σHH of breaking waves in bi-static configurations. Then, we will show the first experimental validation of the numerical results using well calibrated measurements of precise breaking wave profiles. These experimental measurements have been carried out in X-band in our anechoic chamber(E³I²-EA3876-ENSTA BRETAGNE). In this work, we will consider the sea surface as a perfect conductor.
Citation
Slahedine Ben Khadra, Ali Khenchaf, and Kais Khadhra, "Numerical and Experimental Study of the Hydrodynamic Phenomena in Heterogeneous Sea Surface, EM Bistatic Scattering," Progress In Electromagnetics Research B, Vol. 35, 151-166, 2011.
doi:10.2528/PIERB11092003
References

1. Khenchaf, A., "Bistatic scatering and depolarization by randomly rough surface: Application to the natural rough surfaces in X-band," Waves in Random and Complex Media, Vol. 11, 61-87, 2000.

2. Awada, A., Y. Ayari, A. Khenchaf, and A. Coatanhay, "Bistatic scattering from an anisotropic sea surface: Numerical comparison between the first-order SSA and the TSM models," Waves in Random and Complex Media, Vol. 16, No. 3, 2006.
doi:10.1080/17455030600844089

3. Sajjad, N., A. Khenchaf, A. Coatanhay, and A. Awada, An improved two-scale model for the ocean surface bistatic scattering, 6-11 IGARSS, Boston, USA, 2008.

4. Holliday, D., L. L. DeRaad, Jr, and G. J. St-Cyr, "Seaspike backscatter from a steepening wave," IEEE Trans. Antennas Propagation, Vol. 46, 108113, 1998.

5. Wetzel, L. B., "Sea clutter," Radar Handbook, M. I. Skolnik (ed.), McGraw-Hill, New York, 1990.

6. Yao, W. P. and M. P. Tulin, "An efficient numerical tank for non-linear water waves, based on the multi-subdomain approach with BEM," International Journal for Numerical Methods in Fluids, Vol. 20, 1315-1336, 1995.

7. Holliday, D., L. L. DeRaad, Jr., and G. J. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. Antennas Propagat., Vol. 44, 722-729, May 1996.
doi:10.1109/8.496263

8. Kim, H. and J. T. Johnson, "Radar image study of simulated breaking waves," IEEE Transactions on Geosciences and Remote Sensing, Vol. 40, 2143-2150, 2002.

9. Harrington, R. F., Field Computation by Moment Method, IEEE Press, 1993.
doi:10.1109/9780470544631

10. James, C. W., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Transactions on Geosciences and Remote Sensing, Vol. 40, No. 2, Feb. 2002.

11. Khadra, K. B., Surface parameter estimation using bistatic polarimetric X-band measurements, Ph.D. Thesis, German Aerospace Centre (DLR), Institute of Radio Frequency Technology, Oberpfa ®enhofen, Germany, 2008.

12. Alexander, N. T., N. C. Currie, and M. T. Tuley, "Calibration of bistatic RCS measurements," Proceedings of Antenna and Propagation Techniques Association (AMTA) 1995 Symposium, 13-17, Columbus, OH, Nov. 1995.

13. McLaughlin, D. J., Z. Ren, and Y. Wu, "A bistatic polarimeter calibration technique," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 3, May 1995.
doi:10.1109/36.387596

14. Sarabandi, K., F. T. Ulaby, and M. A. Tassoudji, "Calibration of polarimetric radar systems with good polarization isolation," IEEE Trans. Geosci. Remote Sensing, Vol. 28, No. 1, 70-75, Jan. 1990.
doi:10.1109/36.45747

15. Khadra, S. B. and A. Khenchaf, "The bistatic electromagnetic signature of heterogeneous sea surface: Study of the hydrodynamic phenomena," IGARSS, 3549-3552, Honolulu, HI, 2010.

16. Khadra, S. B. and A. Khenchaf, "Numerical and experimental study of the hydrodynamic phenomena in heterogeneous sea surface EM bistatic scattering," OCEANS, Santander, 2011.