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Abstract—In this paper, we will study the influence of nonlinear
waves (breaking waves) on the EM signature of a sea surface in
bistatic case (forward propagation). Indeed, we will start the temporal
numerical analysis of the scattering coefficient σHH of breaking waves
in bi-static configurations. Then, we will show the first experimental
validation of the numerical results using well calibrated measurements
of precise breaking wave profiles. These experimental measurements
have been carried out in X-band in our anechoic chamber (E3I2-
EA3876-ENSTA BRETAGNE). In this work, we will consider the sea
surface as a perfect conductor.

1. INTRODUCTION

Generally, many physical phenomena coexist and affect the electro-
magnetic wave propagation over a heterogeneous sea surface (Fig. 1);
due to the refractive index gradients, roughness of the sea surface, the
presence of objects, pollutants, ship wake, areas Coastal. In recent
literature, the study of these aforementioned phenomena is generally
done separately. To our knowledge, there is no real research that exam-
ined the interaction between these phenomena and their contribution
to the EM surface scattering containing breaking waves.

This paper focuses on the hydrodynamics phenomena, called the
breaking waves. In general, the scattering of an electromagnetic
wave by the sea surface can be divided into two distinct phenomena.
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Initially, there is the scattering of linear waves and secondly, the
scattering of breaking waves which cause non-linear phenomena. In
our case, we could consider that the ocean surface is geometrically
heterogeneous. These phenomena add a component which is not
negligible and which is called the non-Bragg diffusion in the total
diffusion coefficients. Then in this case, it can be written:

σ = σBragg + σNon-Bragg (1)
To date, the Bragg scattering (scattering of linear waves) has been
well studied in many papers [1–3]. However, there exists research
concerning the non-Bragg scattering only in the mono-static case. For
example the work of Holliday et al. [4] shows the existence of the
characteristic of a sea peak in the mono-static case for the grazing
angle (θi = −85 degree). However this characteristic does not exist for
the non-grazing angle (θi = −40 degree, for example). These results
are based on the work of Wetzel [5] which characterizes a sea peak as
a rapid variation of the scattering coefficients, and which can exceed
10 dB in a period of 100 ms. This peak can lead to false echo, which can
be identified as virtual targets that later disorders the radar detection
(false alarm). Therefore, to improve the detection and to reduce false
alarm rates, it is important to distinguish between targets and the
peak of sea waves generated by breaking waves. For this purpose, we
should study the electromagnetic signature of breaking waves, so that
we can easily identify the false alarm and then we can filter it.

The surface scattering by breaking waves “non-Bragg” is not
enough studied and especially in the bi-static configuration. Therefore,
an attempt has been made to study the non-Bragg scattering but
in a bistatic configuration (forward propagation: −90◦ < θi < 90◦,
−90◦ < θs < 90◦), (Fig. 2). For this, the scattering coefficient has
been calculated for a series of waves of the breaking phase for the
different bistatic configurations.

Figure 1. The heterogeneous sea surface.
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Figure 2. Geometric configuration of the bistatic scattering.

The series of waves are calculated by the simulator LONG-
TANK [6] developed by the Ocean Engineering Laboratory, University
of California Santa Barbara (UCSB). The dispersion of the breaking
waves used in this study is more complicated than the rough surfaces
because of their complex form. Consequently, this type of surface
phenomena cannot be treated by the approximate methods such as
KA, SPM, SSA, TSM, WCA [1–3]. We will begin the calculation the
scattering of breaking waves by using numerical methods such as the
method of the FBM technique (forward-backward) developed by Holl-
iday et al. [7] which gives good results even for multiple profiles (such
as breaking waves).

Section 2 describes the breaking waves phenomena. The
calculation method of the scattering coefficient is outlined in Section 3.
The numerical analysis of the scattering coefficients of the breaking
wave for two different construction steps are presented in Section 4.
The validation of the numerical results by the experimental radar
measurements are detailed in Section 5, and conclusions and
recommendations are given in Section 6.

2. BREAKING WAVES

The breaking wave is a dispersion process of the energy which
corresponds with the last stage of a wave’s life. During this phase,
the wave is subject to important transformations in its behavior and
structure. When the waves approach a shore, they arrive in waters less
than half the depth of their wavelength. Their time period does not
change, but their wavelength decreases, as does their speed, however
their height increases. When the depth of the coastal water decreases,
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Figure 3. Profile of breaking waves [6].

there is less free space for the water particles situated on the crest of
the wave to move around in, therefore the wave breaks.

Recently, it has become possible to numerically simulate these
types of waves. Here follows a presentation of the results of one of
these simulations which is called LONGTANK [6] (Fig. 3), and which
will be used throughout this article as a breaking wave model.

LONGTANK is a hydrodynamic code developed at the University
of California, Santa Barbara (UCSB), they have devised a numerical
wave basin, for the study of groups of waves, the wave-wave
interactions, the deforming of waves, the breaking of waves, and other
non-linear effects. Their calculations of wave forms are coherent with
experimental measures and observations of the ocean. The 18 waves
used in this investigation belong to Case 2.4 (studied by Holliday) [4].

The sequence represents the temporal evolution of a breaking wave
with a wavelength of 2.3 m, and during a period of 1.8 seconds. Usually,
there exist four types of diffusion mechanism of a breaking wave [8]. A
single mechanism with a single trajectory is found and is the diffusion
of the crest of the wave, and three mechanisms with multiple (double)
trajectories, which are due to the propagation of the electromagnetic
waves between the crest and the front side of the waves.

In this case, only the single trajectory is examined since in the
profile of the waves. The front side of the waves has been eliminated,
as shown by Fig. 4.

3. METHOD OF CALCULATION

In this work, the numerical FBM is used to calculate the scattering
coefficient. The FBM has been well-discussed in [7, 8]. Actually, the
Integral Equation of the Electric Field (EFIE) for a perfect conductor
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Figure 4. The geometry of diffusion for a breaking wave.

(Equation (2)) is discrete under a matrix form (Equation (3)) by the
MoM discretization process [9].

Ē(r̄) = Ēinc(r̄) + i · ω · µ0

∫
¯̄G

(
r̄, r̄′

) · J̄ (
r̄′

)
dS′ (2)

where J(r) is the induced current on the surface, ω is The radian
frequency, µ0 is permeability of free space, G is the dyadic Green’s
function for free space and Einc is the incident wave.

Z · I = V (3)

where Z it is the impedance of the matrix, V is the wave of incidence,
and I is the induced current along the length of the rough surface. The
FBM method consists of breaking down the Equation (3):

I = If + Ib (4)
Z = Zf + Zs + Zb (5)

where If is the forward component (the current contribution due to the
waves propagating forwards), Ib is the backward component (current
contribution due to the waves propagating backwards), and Zf , Zs and
Zb are respectively, the lower triangular part, the diagonal part, and
the upper triangular part of Z.

Using (4) and (5), (3) can now be split into forward propagation
and backward-propagation matrix equations, respectively, as follows:

Zs · If = V − Zf · (Ib + If ) (6)
Zs · Ib = −Zb · (Ib + If ) (7)

This system can resolve itself by iteration:

(Zs + Zf ) · If (i) = V − Zf · Ib · (i− 1) (8)
(Zs + Zb) · Ib(i) = −Zb · If (i) (9)
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The iteration begins by Ib(0) = 0.
The algorithm of FBM used in this section is in two dimensions

(x, y). An infinite extension is created in the third dimension (z), in
which none of the properties vary.

4. NUMERICAL RESULTS

In this part, we will show the numerical analysis of the scattering
coefficients variation of two breaking wave profiles, profile number
one without crest (Fig. 5(a)) and the profiles number 12 with crest
(Fig. 5(b)), which have been generated by the LONGTANK code.
In these numerical simulations, we used the Gaussian beam for the
transmitted wave.

Usually the breaking wave consists of a crest which can be found
between a positive slope and a negative slope. In this first result
(Fig. 6(a)), we found out only one crest about 5 dB, which represents
the scattering from negative big slope , (Fig. 7(a)). In the second
results (Fig. 6(b)) the response of two slopes (Fig. 7(b)) appears in the
form of two peaks, nearly 5 dB. And the response of a crest appears in
the form of many small peaks [15].

In this first study, we demonstrated that for θi = 0◦ the simple
path scattering from the negative and positive slop of the breaking
wave is larger than the scattering from its crest of, for the bistatic
configuration. However, Johnson and West proved for the monostatic
case and grassing angles in [8, 10] that the scattering from the crest
of the breaking wave is more important than the scattering from its
slops.
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Figure 5. Profile 1 and 2 of breaking waves [6].
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Figure 6. Bistatic scattering coefficients (forward propagation) σHH

and σvv of profile 1 and profile 12

Figure 7. Single trajectory scattering.

As a second step, we will study the temporal variation of the
scattering coefficient of a breaking wave. Indeed, we represent the
temporal variation of σHH for the profiles 4, 8, 12 and 16, (Fig. 8).

Wetzel [5] has defined the sea peak as a rapid changing of σHH

exceeding 10 dB in a period of about 100 ms.
For the bi-static configuration (θi = 0◦ and θs between −42◦ and

−50◦) we found out an increase of σHH , which is the response of the
positive slope of the wave. To understand better this augmentation, we
plot evolution of σHH in function of time. Indeed, we calculate σHH for
the 16 breaking waves profiles (Fig. 9), for the bi-static configuration
as follows (θi = 0◦, θs = −42◦, θi = 0◦, θs = −45◦ and θi = 0◦,
θs = −50◦).

The Table 1 shows the difference of σHH (dB) between the profile
12 and profile 3.

Knowing that the time between profile 3 and profile 12 is in order
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Figure 8. Bistatic scattering
coefficients (forward propagation)
σHH of profile 4, 8, 12, and 16
(θi = 0◦).

Figure 9. Bistatic scattering
coefficients (forward propagation)
σHH of 16 profiles.

Table 1. The difference of σHH (dB) between the profile 12 and profile
3.

θi = 0◦ σHH (dB) of profile 12 − σHH (dB) of profile 3
θs = −42◦ +17.19 dB
θs = −45◦ +21.53 dB
θs = −50◦ +19.56 dB

of 100 ms and the difference of σHH (dB) between these two profile
exceeds 10 dB, which satisfies the criterion of Wetzel [5] for a sea
peak. Then, we can say that for the bistatic configuration (θi = 0◦,
θs = −42◦, θi = 0◦, θs = −45◦ and θi = 0◦, θs = −50◦) we found out
the nonlinear effect of a breaking wave which is in the form of a sea
peak. Indeed, it is the scattering of the positive slope of the breaking
wave, which causes the sea peak [16].

These results are very important. Actually, they prove the
significance of the non-Bragg effect (the non linear breaking wave
effect) on the EM signature of a sea surface in bistatic case (forward
propagation).

5. VALIDATION BY EXPERIMENTAL RADAR
MEASUREMENTS

The validation of the numerical simulations have been done in the
bistatic measurement facility (Fig. 10), which is located in an anechoic
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Figure 10. Bistatic radar system.

chamber (7.7m × 4.4 × 5m), at E3I2-EA3876-laboratory of Ensta-
Bretagne.

Before we compare the experimental measurements with the
numerical simulation, the bistatic measurements facility has to be
calibrated. An important aspect during the calibration process is to
filter the noise or errors without losing useful information. An effective
calibration technique has been chosen for our anechoic chamber to
reduce these errors to acceptable levels and to calibrate the full
polarimetric scattering matrix [11–14].

In general, the errors present during the experimental measure-
ments is equivalent to the distortion matrix model or the calibration
error model, which relates the ideal scattering matrix of the sample
under test to the scattering matrix measured by the network analyzer
(NWA) and is represented by four matrices [10]:

[M ] = [R] · [S] · [T ] + [B] (10)

Matrix Description
[B] The empty chamber noise
[T ] The transmitter distortion matrix
[R] The receiver distortion matrix
[M ] The measured matrix
[S] The ideal matrix

[R] =
[
RHH RHV

RVH RVV

]
, [T ] =

[
THH THV

TVH TVV

]
, [B] =

[
BHH BHV

BVH BVV

]
,

The calibration process consists to determine the matrices [R], [T ] and
[B] and then:

[S] = [R]−1 · ([S]− [T ]) · [B]−1 (11)
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Figure 11. Metallic dihedral.

Wiesbeck and Riegger proposed other representation of the distortion
matrices by combining the matrices [R] and [T ] as the following:

[M ] = [C] · [S] + [B]. (12)


Mhh

Mhv

Mvh

Mvv


 =




C11C12C13C14

C21C22C23C24

C31C32C33C34

C41C42C43C44


 ·




Shh

Shv

Svh

Svv


 +




Bhh

Bhv

Bvh

Bvv




In this case, we have only to calculate the matrix [C] and measuring
the empty chamber noise.

Actually, there are different methods or techniques to calibrate
the anechoic chamber for the monostatic and bistatic case. These
techniques depend on the anechoic chamber. Indeed each measuring
system, either in the field or in a controlled anechoic chamber, is
different; therefore the method of calibration has to be specially
adapted for each case.

In general there are three kinds of calibration:

• Amplitude and phase calibration (Type-1)
• Single polarimetric calibration (Type-2)
• Full polarimetric calibration (Type-3)

For our work, we used the single polarimetric calibration due to its
simplicity and convenient results.

To validate our calibration we have done measurements of metallic
dihedral (300 cm × 300 cm) (Fig. 11) and trihedral (300 cm × 300 cm)
(Fig. 13), in monostatic case and we compare them to the simulation
using the physical optics model (Figs. 12, 14).

These results confirm the reliability of the chosen calibration
technique.

We firstly show the measurements of profile 12 of the breaking
wave (Fig. 15), where the crest is completely formed, using a metallic
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Figure 12. Comparison between the calibrated measurement and the
simulated backscattering coefficient σHH of the metallic Dihedral in
mono-static case.

Figure 13. Metallic trihedral.

profile (Fig. 17), in the monostatic and bistatic configuration (forward
propagation).

If we consider that geometry of the profile is constant along the
axis (Z), it is enough to take a metallic profile with small thickness
(3 cm). And thus we can compare our experimental measurements with
1D numerical simulation.

In this validation phase and for the numerical simulation (FBM),
plane waves have been considered to enable the comparison between
the simulation and the measured data.

An extension is made in the third dimension (z), in which the
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Figure 15. Profile of breaking waves [6].

Figure 16. Profile 12 of breaking
waves in 3D.

Figure 17. The metallic profile
12 of the breaking wave.

properties of the surface are uniform. Hence we get the profile 12 of
wave in 3 dimensions (Fig. 16).

First, we achieved the radar experimental measurement of the
breaking wave profile 12 (Figs. 18, 19) in monostatic case.

For the bistatic case, we have chosen the following configuration
(θi = −21◦, −20◦ < θs < 60◦), where we can find the response of the
breaking wave negative slope (Figs. 20, 21).

We find out that the maximum errors between the measurements
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Figure 20. Comparison between
the calibrated measurement and
the simulated scattering coeffi-
cient σHH of the metallic profile
“forward propagation”.
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“forward propagation”.

and the simulated data in spectral domain is less than 3 dB (Fig. 22),
which is an acceptable as preliminary result for the experimental
measurements.

These radar experiment measurement validate the simulation
results (FBM) in monostatic and bistatic configuration of the breaking
wave profile n◦ 12, where the scattering (simple path) of the breaking
wave positive and negative slope is more relevant than the scattering
from the crest.

These relevant results show that even the simple path scattering of
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Figure 23. Double bound scattering of the breaking wave crest.

the breaking wave positive and negative slopes generates the sea peak
in bistatic case. It should be noted that these sea peaks complicate
the ship detection. However, in monostatic configuration and for
grassing angles, the sea peaks are produced by the double bound
scattering of the breaking wave crest (Fig. 23), D. Holliday [7] and
James C. West [10].

With this important result in the bistatic configuration (forward
propagation), we can give clear characteristics in terms of scattering
mechanism for the sea peaks produced by the breaking waves. And
then, we can distinguish between the sea peaks produced either by the
searched target or by the breaking wave, which will help us to improve
the maritime surveillance system.

6. CONCLUSION

In this paper, we introduced the first study of the breaking wave
(nonlinear hydrodynamic effect) in the electromagnetic signature of
sea surface for the bistatic configuration (forward propagation).

These results show that for non-grassing angels, particularly for
θi = 0◦ the presence of a sea peak. However, it has been proved that the
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sea peak occurs only for the grassing angles monostatic case (Holliday
et al. [4]).

We have also demonstrated that the sea peak is due the simple
path scattering of the breaking wave positive slope. These results
validate the importance of the breaking waves in the calculation of
the electromagnetic signature of heterogeneous marine coastal areas in
bi-static configuration (forward propagation).

To validate the previous numerical analyses, radar experimental
measurements have been carried out in an anechoic chamber for
the both configuration (monostatic and bistatic). For this task,
the breaking wave profile number 12, which is generated by the
LONGTANK [6] code, has been used. These measurements agree
obviously with the FBM simulation, where is demonstrated that the
scattering from the breaking wave slopes (positive and negative) is
larger than the scattering from the peak.

In our future works, we will consider the double bound scattering
produced from the front and the crest of the breaking waves. That
means the problem will be for 3D surfaces.
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