Vol. 121
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-10-20
Molecular EM Fields and Dynamical Responses in Solids with Magnetic Charges
By
Progress In Electromagnetics Research, Vol. 121, 159-179, 2011
Abstract
The monopoles are theoretically defined as charges which produce fields whose divergence is, obviously, different from zero. However, the entities which have been experimentally detected in the spin-ices, with mimetic behavior to that of the magnetic monopoles, generate magnetic fields which seem to be compatible with ∇·B = 0. This apparent contradiction can create confusion and therefore it requires explanation. In this paper we have carried out an analysis of the different electromagnetic fields in the spin-ices materials. We clarify the differences between the average fields of standard Maxwell equations with zero divergence even in spin-ices and the non macroscopic fields when there are magnetic monopoles in these materials. We give the molecular or local fields which allow us to determine the molecular polarizability. We combine the extended Clausius-Mossotti equations with the Lorentz-Drude model for obtaining the extended susceptibility and the optical conductivity which can be used for explaining the action of the electromagnetic fields in spin-ices.
Citation
Joan Costa-Quintana, and Fernando Lopez-Aguilar, "Molecular EM Fields and Dynamical Responses in Solids with Magnetic Charges," Progress In Electromagnetics Research, Vol. 121, 159-179, 2011.
doi:10.2528/PIER11071902
References

1. Dirac, P. A. M., "Quantized singularities in the electromagnetic field," Proc. Roy. Soc., Vol. A133, 60, 1931.

2. Jordan, P., "The Dirac magnetic pole," Ann. Physik, Vol. 32, 66, 1938.

3. Hooft, G.'t, "Magnetic monopoles in unified gauge theories," Nuclear Physics B, Vol. 79, 276-284, 1974.

4. Polyakov, A. M., "Particle spectrum in quantum field theory," JETP Lett., Vol. 20, 194-195, 1974.

5. Cabrera, B., "First results from a superconductive detector for moving magnetic monopoles," Phys. Rev. Lett., Vol. 48, 1378-1381, 1982.

6. Balestra, S., G. Giacomelli, M. Giorgini, L. Patrizii, V. Popa, Z. Sahnoun, and V. Togo, "Magnetic monopole bibliography-II," arXiv: 1105.5587v1 [hep-ex], May 27, 2011, and references therein.

7. Castelnovo, C., R. Moessner, and S. L. Sondhi, "Magnetic monopoles in spin ice,", (see complementary material published in the same journal where the equivalence between Hamiltonians (1) and (2) is demonstrated), Nature, Vol. 451, 42-45, 2008.

8. Sondhi, S., "Wien route to monopoles," Nature, 888-889, 2009.

9. Qi, X.-L., R. Li, J. Zang, and S.-C. Zhang, "Inducing a magnetic monopole with topological surface states," Science, Vol. 323, 1184-1187, 2009.

10. Morris, D. J. P., D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, "Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7," Science, Vol. 326, 411-414, 2009.

11. Bramwell, S. T., S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, "Measurement of the charge and current of magnetic monopoles in spin ice," Nature, Vol. 461, 956-960, 2009.

12. Giblin, S. R., S. T. Bramwell, P. C. W. Holdsworth, D. Prabhakaran, and I. Terry, "Creation and measurement of long-lived magnetic monopole currents in spin ice," Nature Phys., Vol. 7, 252-258, 2011.

13. Mol, L. A. S., W. A. Moura-Melo, and A. R. Pereira, "Conditions for the magnetic monopolesin nanoscale squarre arrays of dipolar spin-ice," Phys. Rev. B, Vol. 82, 054434-1-6, 2010.

14. Mellado, P., O. Petrova, Y. Shen, and O. Tchernyshyov, "Dynamics of magnetic charges in artificial spin ice," Phys. Rev. Lett., Vol. 105, 187206-1-4, 2010.

15. Tchernyshyov, O., "No longer on thin ice," Nature Phys., Vol. 6, 323-324, 2010.

16. Umul, Y. Z., "Rigorous expressions for the equivalent edge currents," Progress In Electromagnetics Research B, Vol. 15, 77-94, 2009.

17. Umul, Y. Z., "Electric charges that behave as magnetic monopoles," Progress In Electromagnetics Research Letters, Vol. 18, 19-28, 2010.

18. Quijano, J. L. A. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.

19. Ladak, S., D. E. Read, G. K. Perkins, L. F. Cohen, and W. R. Branford, "Direct observation of magnetic monopole defects in an artificial spin-ice system," Nature Phys., Vol. 6, 359-363, 2010.

20. Gingras, M. J., "Observing monopoles in a magnetic analog of ice," Science, Vol. 326, 375-376, 2009.

21. Mengotti, E., L. J. Heyderman, A. F. Rodriguez, F. Nolting, R. V. Hugli, and H.-B. Braun, "Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice," Nature Phys., Vol. 7, 68-74, 2011.

22. Bonitz, M., "A plasma of magnetic monopoles," Nature Phys., Vol. 7, 192-194, 2011.

23. Jaubert, L. D. C. and P. C. W. Holsworth, "Signature of magnetic monopole and dirac string dynamics in spin ice," Nature Phys., Vol. 5, 258-261, 2009.

24. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of a three-layer structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.

25. Elliot, R. S., Electromagnetics, McGraw-Hill, 1966.

26. Kittel, C., "Introduction to Solid State Physics," John Wiley & Sons, Inc., 1986.

27. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, "Electrodynamics of Continuous Media," Elsevier, 1993.

28. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, Inc., 1999.

29. Lorrain, P. and D. R. Corson, Electromagnetics Fields and Waves, Freeman, 1988.

30. Cumings, J., "Artifocial ice goes thermal," Nature Phys., Vol. 7, 7-8, 2011.

31. Bramwell, S. T. and M. J. P. Gingras, "Spin ice state in frustrated magnetic pyrochlore materials," Science, Vol. 294, 1495-1501, 2001.

32. Costa-Quintana, J. and F. Lopez-Aguilar, "Extended classical electrodynamics with magnetic monopoles," Far East Journal of Mechanical Engineering and Physics, Vol. 1, 19-56, 2010.

33. Costa-Quintana, J. and F. Lopez-Aguilar, "Propagation of electromagnetic waves in material media with magnetic monopoles," Progress In Electromagnetics Research, Vol. 110, 267-295, 2010.

34. Costa-Quintana, J. and F. López-Aguilar, "Fresnel coeficients in materials with magnetic monopoles," Optics Express, Vol. 19, 3742-3757, 2011.

35. Shnir, Y. M., Magnetic Monopoles, Springer-Verlag, Berlin, 2005.