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E-08193 Barcelona, Spain

Abstract—The monopoles are theoretically defined as charges which
produce fields whose divergence is, obviously, different from zero.
However, the entities which have been experimentally detected in
the spin-ices, with mimetic behavior to that of the magnetic
monopoles, generate magneti c fields which seem to be compatible
with ∇·B = 0. This apparent contradiction can create confusion
and therefore it requires explanation. In this paper we have carried
out an analysis of the different electromagnetic fields in the spin-
ices materials. We clarify the differences between the average fields
of standard Maxwell equations with zero divergence even in spin-ices
and the non macroscopic fields when there are magnetic monopoles
in these materials. We give the molecular or local fields which
allow us to determine the molecular polarizability. We combine the
extended Clausius-Mossotti equations with the Lorentz-Drude model
for obtaining the extended susceptibility and the optical conductivity
which can be used for explaining the action of the electromagnetic
fields in spin-ices.

1. INTRODUCTION

Since Dirac argued [1] in 1931 that a possibly explanation of the
electric charge quantization requires the existence of magnetic charges,
the magnetic monopoles are a permanent and recurrent problem from
either theoretical or experimental points of view. A contribution to the
interpretation of these monopoles was carried out in 1938 by Jordan [2]
and in 1974 Hooft [3] and Polyakov [4] introduced the magnetic
monopole idea as a contribution to the second great unification of
the three more intense forces, electromagnetic, weak nuclear and
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strong nuclear interactions. These and other theoretical analysis have
provoked that the experimental pursuit of the magnetic monopole
manifestation is an issue that is both liminal and subliminally present
since 1982 [5] and now is receiving a payment of attention in both high
energy physics [6] and solid state (SS) physics [6–15].

Other lines of research of magnetic charges and magnetic currents
have been developed for the calculation of the fields in the wave
scattering of diffraction in the aperture antennas [16], in the studies
on the memristors [17] and in the study of equivalent sources in the
reconstruction of 3D surfaces [18]. These equivalent field sources are
constituted of superficial electric and magnetic currents located in
the closed surface. The consideration of the currents of magnetic
charges can be an excellent and effective mathematical procedure for
calculating complex electromagnetic problems [16–18]. However, these
procedures are developed in order to obtain more accuracy in the
solutions of the Maxwell equations in very complex electromagnetic
systems and do not try to assign independent phenomenology to these
magnetic charges and currents.

In any case, the intuitive idea of Dirac and the other pioneers
in the magnetic charge theories is being experimentally materialized
and appearing now, maybe in a different form what they thought.
But some key clues of these theories are serving of inspiration
for understanding some experimental electromagnetic phenomenology
raised on magnetic materials such as the spin-ices [11, 12]. The
presence of magnetic charges detected within the condensed matter
does not correspond to elemental particles, but they are due to
the spin flip occurrence in low energy excitation states of magnetic
structures, such as the spin-ices, or by means of image states of external
electrons in topological insulators [9]. These magnetic charges have an
effective behavior which is mimetic to that of the magnetic monopoles
and their phenomenology is due to the interplay of the interaction
with the material medium and the application of an external field.
Therefore, in SS physics the magnetic monopoles are effective models
for explaining the phenomenological behavior of determined crystals.
These models are submitted to the diatribe and speculation being the
unique validation the experimental evidences, which fortunately are
easier to attain than those concerning the high energy physics. In
addition, in SS physics the definition of magnetic monopoles is accepted
with the apparent contradictory condition of being∇·B = 0, and some
researches consider that the existence of these magnetic monopoles are
coherent with the standard Maxwell equations, which can induce the
question: what kind of magnetic monopole is it?

The central idea of the spin-ice magnetic monopoles is the
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existence of low energy excitations of the spin field chain when a spin
flip is produced between two contiguous crystalline tetrahedral basis.
Then the configuration suffers a change in such a way that the magnetic
field sources are similar to those due to the existence of micromagnets
with two poles, the denominated dumbbells [7, 8, 10–12, 19]. Then,
each micromagnet can be considered as a pole-antipole pair which
can be broken when the length of the string which form these pairs
increases. The propagation of these spin flips can be extended in the
crystal, generating a system whose physical image can be represented
as similar to Dirac-like strings in which the corresponding poles do
not practically suffer any mutual interaction. However, the strings
in these spin-ices are theoretically observable [20] and experimentally
observed [21], and this point may represent a difference with respect to
those of the Dirac theory [20]. In addition, the monopole Dirac charge
is quantized in contrast to the effective magnetic charge of the spin-ice
strings which can have any value.

The pole-antipole micromagnet breaks are favored when the
strength of their inter-pole interaction is less than that existing with the
eventual application of an external magnetic field. Then, the existence
of two component poles coming from the micromagnet can be possible
and they can travel independently over the crystal. The proliferation
of the deconfined pole-antipole pairs produces a quasiparticle gas of
magnetic charges whose behavior can be visualized as a magnetic
plasma [22]. The result is a density of dissociated pairs immersed in a
system of non broken micromagnets. When the density of deconfined
magnetic charges is sufficiently large, the system can be studied as an
interacting gas of magnetic charges whose dynamics is controlled by
the Coulomb-like interaction [7, 8, 11, 12, 19, 22] Vij = K

4π
gigj

rij
, where K

is a constant which defines the unit of magnetic charge (gi).
The substitution of the spin system configuration by these

interacting magnetic charges implies that the magnetic structural
system can be understood as magnetic particle gas within the vacuum
background dominated by dielectric and magnetic responses under
the electromagnetic external interactions. However, in a real state
of this crystal different from that extremal gas situation, deconfined
single monopoles of different charge sign can coexist with pole-antipole
coupled micromagnets [11, 12]. In this intermediate situation the
classical field concepts should be considered in order to establish the
equations that can be applied within the Classical Electrodynamics.
This analysis is necessary for a future construction of the classical
Lagrangian function with magnetic monopoles in solid which have to
be used for obtaining, by the correspondence principle, the quantum
Schroedinger equation and the corresponding quantum field theory for
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these systems. Then, in the limit of constant density of deconfined
magnetic charges, the corresponding dual electric charge system could
be the jellium model of an electronic gas.

2. THE DUMBBELL MODEL

The spin-spin interaction Hamiltonian which is generally accepted in
the spin-ice crystal structures [7, 8, 19, 23] contains a sum of nearest-
neighbor exchange and long range dipolar interactions,

H = J
∑

〈ij〉 SiSj + D
∑

i,j

[
3 (ei · rij) (ej · rij)

r5
ij

− ei · ej

r3
ij

]
SiSj , (1)

where J and D are coupling constants, the distance between spins (Si,
Sj) is rij , and ei is the unitary vector en in the i-spin direction. In this
Hamiltonian the classical nature given by the authors to the Si and Sj

spin variables is clear, such as they are in the Ising-like models.
The standard magnetic dipole can be thought as a current I in a

circuit (kinetic dipole) whose surface is S, then the magnetic moment
me is me = IS. However, another image of these magnetic moments
consists of the substitution of these magnetic dipoles by the so-called
dumbbell model. Actually, the magnetic dipoles can also be thought
as pairs of equal magnitude and opposite sign magnetic charges ±g,
split by a distance d (split-charge dipole), and pm = gd. This simple
expression can be used for the determination of the magnetic charge
g, since pm is given by the magnetic moment of the corresponding ions
of the crystal and d is given by the lattice parameter whose value can
be any real number. This dumbbell model is basic for constructing
the effective equivalent systems of micromagnets whose elongation
generates the spin-ice strings [7, 8]. A typical image of a spin-ice
would be a “soup” of strings of different sizes inextricably mixed with
dissociated magnetic charges coming from the broken micromagnet due
to the excessive length of the corresponding strings. Castelnovo et al.
in 2008 [7] showed that the energy in the spin-ice ground state can be
accounted for by the magnetic Coulomb energy of the dumbbell model
whose expression is

E =
∑

i,j (rij 6=0)

K

4π

gigj

rij
+

∑

i,j (rij=0)

v0gigj , (2)

where the gi and gj are the magnetic charges of each pole of the
dumbbell micromagnet and v0 is the self-energy of each g charge.
The legitimation of the dumbbell model becomes effective since
the energy of Equation (2) is equivalent to the dipolar energy of
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Equation (1), up to corrections which are small everywhere and vanish
with distance at least as fast as 1/r5 [7]. Therefore, the Ising-like
model of Hamiltonian of Equation (1) can be substituted by an effective
Coulomb Hamiltonian. If one considers the kinetic energy of the
effective magnetic charges within the magnetic spin-ice monopole gas,
the effective Hamiltonian is:

Hef =
∑

i

p2
i

2mi
+

∑

i,j (rij 6=0)

K

4π

gigj

rij
+

∑

i,j (rij=0)

v0gigj , (3)

where pi and mi are the linear moment and effective mass of the
corresponding gi magnetic charge. In the limit of large density of
deconfined magnetic charges, this dumbbell model presents similar
ingredients to a magnetic plasma with certain similarities to its dual
electronic metallic system [11, 12]. The central point of the study
of these cases of generic plasmas is based on the frequency response
of the system and the corresponding plasma frequency [22, 24] which
depends on the density of charged particles. In the cases of electric
charge plasmas, the medium response is the dynamical dielectric
function [24] and in the magnetic plasma case, the corresponding
frequency responses of the medium is that coming from the magnetic
charges [22].

The expression of Equation (3) may suggest a quantum analysis,
however this is not our objective in the present work since, in the
realistic and intermediate cases, the image is different. In these
cases, confined dumbbell pairs coexist with spin-ice strings of different
sizes and deconfined (independent) magnetic charges coming from the
broken pairs [7, 11, 12]. Then, the knowledge of the frequency responses
in order to obtain clues about the dielectric and transport properties
seems to be a next logical step [22] in the spin-ice study. These
frequency responses are our goal of the next sections.

Equation (2) implies an effective Coulomb-like potential φm(r) =
K
4π

g
r , which produces a microscopic magnetic field (magnetic field in a

space point r) around the charge g:

B(r) =
K

4π
g

r
r3

, ∇ ·B = Kgδ(r). (4)

At great distances, the field of the two models, kinetic dipoles and
split-charge dipoles, will be the same when

Kpm = µ0me. (5)

We want to emphasize that one should distinguish the field B
from the average field 〈B〉 of the standard Maxwell equations whose
divergence is null even in the spin-ices [22]. The question is the utility
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of this average magnetic field concept in the dynamic of the mimetic
magnetic charges which have molecular dimensions. In any case, in
order to establish the Classical and Quantum Electrodynamics in these
materials, the different kinds of the electric and magnetic fields should
be analyzed in order to clarify the possible apparent contradictions.
This implies a certain revision of the concepts of different microscopic,
molecular and average fields, adjusting their determination to the new
conditions and properties of the magnetic monopoles which are present
in the spin-ices, being this one of the first objectives of this paper.

3. MAGNETIC FIELDS WITHIN A SPIN-ICE

The magnetic monopole behavior of determined entities within the
spin-ices, as well as the concurrence of being ∇ · 〈B〉 = 0 for the
average Maxwell field induce us to make an exhaustive analysis of
the classical fields which have incidence in the phenomenology of these
systems since these two points are apparently contradictory. Therefore,
in this section we carry out an analysis around the different magnetic
fields associated to the two different models, the spin configuration
of the spin-ices and its equivalent dumbbell model. In the classical
Electromagnetism, a magnetic potential vector can be associated to
each magnetic entity with magnetic moment mi. This magnetic
potential vector generates a magnetic field at a point, usually called
microscopic magnetic field [25–27],

B′(r) = ∇× µ0

4π

∑

i

∫

V ′

Ji(r′)
|r− r′|d

3r′, (6)

where Ji(r′) is the assigned electric current to the particle (or
magnetic structural entity) which presents the effective magnetic
moment mi = 1

2

∫
r × Ji(r)d3r. The named macroscopic or average

magnetic field within the matter, which appears in the standard
Maxwell equations [28], can be obtained by means of the following
process [25, 26, 28, 29]. In a first step, one determines the contribution
of all magnetic moments in the matter excluding a small volume, ∆V ,
which contains the point where the magnetic field should be calculated.
The dimensions of this ∆V volume are small enough to consider that
the Maxwell fields are constant. But are large enough to consider only
the long range term in the dipole field of the molecules outside this
volume. A second contribution should be added to the first one. This
contribution is the average value of the magnetic field created by the
magnetic moments of the molecules within this ∆V volume. These two
terms constitute the so-called macroscopic or average electromagnetic
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field in the magnetic material, and it is that of standard Maxwell
equations.

The average value of the magnetic field in the volume (∆V )
created by the magnetic moments within this volume is (see appendix
A)

〈
b′

〉
∆V

=
2
3
µ0Me, (7)

where Me is the magnetization due to the electric currents.
When one considers the dumbbell model with magnetic charges

gi, the average value of the field created by all gi-charges located in
the small spherical volume ∆V can be written as (see appendix A)

〈b〉∆V = −K

3
Pm, (8)

where Pm is the polarization of magnetic charge dipoles formed by a
split of monopole-antimonopole confined pair.

For the validity of the dumbbell model the Equation (5) must be
fulfilled, i.e., KPm = µ0Me. Then if the contribution to the magnetic
field of the molecules outside the volume ∆V is B0, the average field
of the spin configuration is

〈
B′〉 = B0 +

〈
b′

〉
∆V

= B0 +
2
3
µ0Me, (9)

and for the dumbbell model

〈B〉 = B0 − 1
3
KPm = B0 − 1

3
µ0Me. (10)

Therefore, the difference between the average magnetic field
corresponding to the classical physics interpretation of the spin
configuration, and that corresponding to the dumbbell model is〈

B′〉 = 〈B〉+ µ0Me. (11)

As a consequence, one has to distinguish two different magnetic
fields: the average magnetic field 〈B〉 of the dumbbell model and the
average magnetic field of the spin configuration 〈B′〉 which is the only
field of these two whose divergence is null and that can be defined as
the field of standard Maxwell equations. Therefore, ∇ · 〈B〉 = Kρm,
where ρm = −∇ ·Pm is the density of magnetic “dumbbell” charges.

In the spin-ice in three dimensions there is no long-range
ordering, they are disordered magnetic systems [30, 31], therefore the
macroscopic magnetization Me = 0 and 〈B〉 = 〈B′〉. In addition, this
point agrees with those recent interpretations about the magnetic field
in the spin-ices that claim over magnetic monopole structures with the
apparent contradictory condition of ∇·〈B〉 = 0, 〈B〉 being the average
field of the Maxwell equations.
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4. EXTENDED MAXWELL EQUATIONS FOR THE
DUMBBELL MODEL

The above magnetic field, generated by each pole charge of the
micromagnet, competes with the external magnetic field in the
interaction with the magnetic charges. From these competitive actions,
the dynamic of the monopole system is such that each pole (or antipole)
can be independently moved and then it generates an electric field of
the type E = v ×B. Therefore, the monopole current Jm is a source
of electric field in an identical way as electric charges in movement
generate a magnetic field. In fact, the capability of independent
movement of each pole of the micromagnet under magnetic field,
which originates the magnetricity and the subsequent formation of
the magnetic plasma, is the true phenomenological novelty occurred
in the spin-ices. These novel phenomena justifies the denomination
of the components of the micromagnet as magnetic charges, since
both the magnetic field created by them and their behavior under
an external magnetic field is mimetic to that of magnetic monopoles.
If there is no independent movement of the different poles of the
molecular micromagnet, any phenomenological novelty is discarded.
The electromagnetic fields produced by monopoles are governed by
the equations

∇ ·E = 0, ∇×E = −KJm − ∂B
∂t

,

∇ ·B = Kρm, ∇×B =
1
c2

∂E
∂t

, (12)

where ρm is the monopole density and Jm the current density of
monopoles. Obviously, if the constant K is zero, the above equation are
the Maxwell equations in “strictu sensu” without presence of electric
charges. On the other hand, the existence of the magnetic charges
implies a Lorentz force

F =
K

µ0
g

(
B− 1

c2
v ×E

)
= κg

(
cB− 1

c
v ×E

)
, (13)

where κ ≡ K/(cµ0) is a constant that can also be used to establish the
unit of magnetic charge.

Note that with the exception of the minus sign of Jm, in the
curl equation of the electric field, the above equations are symmetric
with respect to the two fields E and B. The duality transformation
consists of changing E → cB, cB → −E, q → κg, and κg → −q.
Then the above equations (Maxwell and Lorentz equations) are the
standard ones. This implies the existence of a dual phenomenology
with magnetic charges with respect to that existing with electric
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charges where the first experimental manifestation is the magnetricity
measured by Bramwell et al. [11, 12]. These authors give account
of the movement of the magnetic monopoles in spin-ices when the
interaction of these charges with the external magnetic field surpasses
the Coulomb interaction among themselves. However, this is not an
isolated phenomenon since many symmetrical physical phenomena can
appear when the entities with magnetic charge behavior are present
within the matter.

A simple example, deduced form the Lorentz force, is the braking
effect of a sample with free magnetic charges under an electric
field whose direction is perpendicular to the sample velocity. This
phenomenon is a symmetric dualism of that suffered by a conductor
under a magnetic field, in similar direction conditions. Actually, if
one considers a conductor moving at a velocity u, it slows down when
entering in a space region with magnetic field B perpendicular to its
velocity, since electrical charges will move at δv = q

mu × Bδt. Then
there will be a Lorentz force

F = qδv ×B =
q2

m
(u×B)×Bδt = −q2

m
δtB2u. (14)

This force slows down the conductor until it stops. it is the well known
magnetic braking. A similar effect should happen when a material
with free magnetic monopoles enters in a space region where there
is an electric field. The speed of monopoles after a time δt will be
δv = κg

mcv ×Eδt, and the Lorentz’s force will be

F = −κg

c
δv ×E =

κ2g2

mc2
(u×E)×Eδt = −κ2g2

mc2
δtE2u. (15)

The result is that the sample with magnetic charges also slows. This
electric braking of a material with free magnetic monopoles could be
used to verify the existence of such monopoles.

5. UNIFIED FIELD EQUATIONS WITH ELECTRIC
AND MAGNETIC CHARGES

The above equations, (12) and (13), are responsible for the classical
dynamics of the magnetic charges when there are not any electric
charges directly interacting (indirectly it is unavoidable) with the
magnetic monopoles due to the insulator nature of the spin-ices.
However, this is a particular case of another more general study in
which the electric charges and magnetic charges coexist in different
particles, and even in the same particles (i.e., we consider the
case in which the charge of the particles has electric and magnetic
components). If one assumes, in addition to the electric charges and the
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corresponding current densities (ρe, Je), a certain density of magnetic
monopoles (ρm) with their current density (Jm), the general modified
Maxwell equations are [28, 32–34]

∇ ·G =
1
ε0

%, ∇×G =
1

ε0c
ΩJ +

1
c

∂

∂t
ΩG. (16)

In these “Maxwell” equations, the electromagnetic charge and current
densities (%, J), and the electromagnetic field G are defined as

% ≡
(

ρe

κρm

)
, J ≡

(
Je

κJm

)
, G ≡

(
E
cB

)
. (17)

Note that %, J and G are column matrices with two components: one
in a subspace that is electrical and another that is magnetic. Also in

Equation (16), we have defined Ω ≡
(

0 −1
1 0

)
, which is fundamental

since it controls the symmetry between the electric and magnetic
fields and in addition, it establishes the limits of this symmetry. The
existence of the minus sign (−1) in Ω comes from that of Jm in the
curl electric field equation, and it is necessary in order to maintain the
energy conservation principle.

The Lorentz force is [28, 32, 33]

F =
K

µ0
g

(
B− 1

c2
v ×E

)
+ q (E + v ×B)

= QT
(
1− v

c
× Ω

)
G. (18)

The electromagnetic charge Q [QT ≡ (q, κg)], sometimes called
dyon [35], has also two components, an electric, q, and a magnetic,
κg.

5.1. Field Equations in Matter

One of the key objects in the definition of the electrodynamics within
the matter is the dipole moment concept, whose extended definition
when there are magnetic charges can be formulated by as follows:

P ≡
(

Pe

κPm

)
≡ 1

∆V
∫

∆V
r
(

ρe

κρm

)
d3r, (19)

M ≡
(

Me

κMm

)
≡ 1

2∆V
∫

∆V
r×

(
Je

κJm

)
d3r, (20)

where, ∆V is a volume that approaches zero, Pe (Pm) is the electric
(magnetic) polarization due to a split in the gravity centers of the
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electric (magnetic) charges, and Me (Mm) is the magnetization due
to the electric (magnetic) currents. We call P split-charge polarization
and M kinetic polarization.

Following a coherent and parallel way to the standard Classical
Electrodynamics the result is

∇ ·G =
1
ε0

(%−∇ ·P) , ∇×G = µ0cΩ(J +∇×M) . (21)

5.2. Linear Response

The Lorentz’s force, Equation (18), of an external field G on a static
dyon with QT = (q, κg) ≡ |Q|(cos ζ, sin ζ), will be

F0 = |Q| (cos ζ, sin ζ)G (22)

and the separation between charges is proportional to this force. Thus,
it is reasonable that the split charge dipole moment induced in a
molecule will be

p =
α

|Q|2 |Q|
(

cos ζ
sin ζ

)
F0 = αΘG, (23)

where α is the polarizability of the molecule and the Θ-matrix
expression is given by

Θ ≡ 1
|Q|2

(
q
κg

)
(q, κg) =

(
cos2 ζ cos ζ sin ζ

cos ζ sin ζ sin2 ζ

)
. (24)

The procedure is similar for a dyon moving at velocity v. The
Lorentz force due to the velocity is

Fv = −|Q| (cos ζ, sin ζ)
v
c
× ΩG, (25)

and the modification of the current will be proportional to this force.
Therefore, it is expected that the kinetic dipole moment induced will
be

m =
α′

|Q|2 |Q|
(

cos ζ
sin ζ

)
Fv = α′Θ′G, (26)

where the constant α′ depends on the molecule and the Θ′ ≡ −ΘΩ
(see Appendix B for a detailed expression).

6. MOLECULAR FIELD AND CLAUSIUS-MOSSOTTI
EQUATION

The dumbbell model of spin-ice systems can be conceived as a medium
with magnetic charges of different sign traveling in the matter as a
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Coulomb gas similar to a plasma [22]. In this image, the medium
response before modifications of the magnetic charge density has
a significant importance for determining their electric, magnetic,
optical and electromagnetic wave propagation properties [24, 33].
These properties depend on the dielectric and magnetic permeability
functions of the material media based on the effective fields able to
electrically and magnetically polarize the molecules.

Therefore, we have to establish an intermediate field concept
(between the average Maxwell field 〈B〉 and the point field B) that
depends on the environment and determines the magnetic and electric
response functions. This field is the so-called molecular or local field
Bmol, and it is defined [25] as the average field intensity acting on
a given molecule within the material. The molecular field Bmol is
due to all external sources plus every other molecule constituting the
material, but excluding the own field of the molecule in question. It
may be determined by removing the molecule in question, maintaining
all other molecules in their time-averaged states, and calculating the
space-averaged magnetic field in the cavity previously occupied by the
removed molecule.

If the cavity can be chosen as a spherical volume of radius r0, then
the results of Appendix A give

Emol = E +
1

4πε0r3
0

pe +
2K

4πr3
0

mm, (27)

where the second term is due to the split-charge dipolar moment pe of
the electrical charges, and the third term takes into account the kinetic
dipoles mm of the magnetic currents, included in the small molecular
cavity. For the magnetic field

Bmol = B +
K

4πr3
0

pm − 2µ0

4πr3
0

me, (28)

where we have assumed that there are split-charge dipolar moments
pm due to the monopoles, and kinetic dipolar moments me due to the
electric currents.

Assuming parallel and equal polarization for all local molecules:
3

4πr3
0

me,m = Me,m,
3

4πr3
0

pe,m = Pe,m, (29)

it gives

Emol = E +
1

3ε0
Pe +

2
3
KMm, Bmol = B +

K

3
Pm − 2

3
µ0Me. (30)

Also one can calculate the molecular field by splitting the volume
of material in two, through a virtual sphere of volume ∆V . The field
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due to molecules outside the sphere is E, B. The field due to the
molecules on the surface of the sphere is

Esurf =
1

3ε0
Pe +

2
3
KMm, Bsurf =

1
3
KPm − 2

3
µ0Me. (31)

In certain circumstances (cubic symmetry, for example), the field due
to the molecules within the sphere can be considered zero, and then
Emol = E + Esurf and Bmol = B + Bsurf , that are the same equations
found above, Equation (30).

In both methods, if we consider the existence of electric and
magnetic charges, as well as magnetic and electric currents, we have
the following expressions for the extended molecular field:

Gmol = G +
P
3ε0

− 2
3
µ0cΩM. (32)

This is a particular case of a more general relationships of the extended
molecular field

Gmol = G + γ
P
ε0

+ (γ′ − 1)µ0cΩM, (33)

when γ = γ′ = 1/3, we obtain the specific case for a spherical volume,
∆V .

The minimal energy principle implies the tendency to orientate
the dipole moments p and m in the direction of the extended field
Gmol. Therefore, according to the Equations (23) and (26) if there are
N molecules per unit volume

P = Np = NαΘGmol ≡ ΛΘGmol, (34)
M = Nm = Nα′Θ′Gmol ≡ Λ′Θ′Gmol. (35)

In the appendix, we give some properties of matrices that fulfill:
ΘP = P; ΘΩM = 0; Θ′P = 0; Θ′ΩM = M. As a consequence
we have the following expressions for the polarization P and M:

P = ΛΘG + Λγ
P
ε0

; M = Λ′Θ′G + Λ′(γ′ − 1)µ0cM. (36)

The split-charge susceptibility is:

P =
Λ

1− Λγ/ε0
ΘG = ε0χsΘG ⇒ χs =

Λ/ε0

1− Λγ/ε0
. (37)

In the case of absence of magnetic charges, one obviously obtains the
standard Clausius-Mossotti expression for the electrical susceptibility,
if Λ = Nα and γ = 1/3

χe =
Nα/ε0

1−Nα/3ε0
. (38)
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The kinetic susceptibility can also be calculated from following
equations:

M =
Λ′

1− Λ′(γ′ − 1)µ0c
Θ′G =

ξ

µ0c
Θ′G (39)

and therefore

ξ =
Λ′µ0c

1− Λ′(γ′ − 1)µ0c
⇒ χk ≡ ξ

1− ξ
=

Λ′µ0c

1− Λ′γ′µ0c
. (40)

This result is also coherent with the corresponding standard result for
the magnetic susceptibility when the magnetic charges are absent [25].

7. SUSCEPTIBILITY IN THE LORENTZ-DRUDE
MODEL

The electromagnetic dynamical conductivity and absorption can be
determined from the frequency dielectric function which in turn can be
calculated from the Lorentz-Drude model. This model, which although
uses a classical harmonic oscillator for the charged particles, presents
features for the corresponding response functions that allow to describe
system conductivity properties in concordance with some quantum
models. We consider a dyonic charge Q under an extended molecular
electromagnetic field Gmol = G0e

−iωt. Assuming a logical extension of
the classical Lorentz-Drude oscillator in the x direction, the equation
of motion can be written

d2x

dt2
+ Γ

dx

dt
+ ω2

0x =
QTGloc

m
, (41)

where ω0 is the resonant frequency of the classic oscillator
corresponding to a particle with a dyonic charge Q, and Γ is the
damping constant. The split-charge polarization with a particle density
per volume unity N is:

P = NQx = NQ
QTG0/m

ω2
0 − ω2 − iΓω

e−iωt =
N |Q|2ΘG0/m

ω2
0 − ω2 − iΓω

e−iωt. (42)

Then, we can define polarizability α [25] with Equation (23) resulting
P ≡ NαΘGmol, and thus we obtain

Nα

ε0
= ω2

p

1
ω2

0 − ω2 − iΓω
, ω2

p ≡
N |Q|2
mε0

. (43)

If we consider the above Clausius-Mossotti equation

χs =
3Nα/ε0

3−Nα/ε0
=

ω2
p

ω2
0 − ω2

p/3− ω2 − iΓω
. (44)
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This results implies an effective frequency defined by ω2
i ≡ ω2

0 −
ω2

p/3. If one considers several classes of particles with ωi oscillator
frequencies, then the split-charge susceptibility can be obtained
considering analogical arguments to those of the standard Lorentz-
Drude model, and the results are

χs =
∑

i

ω2
p

ω2
i − ω2 − iΓω

, P = ε0χsΘG. (45)

These expressions are valid for determined approximations within
Quantum Physics of the Solid, fundamentally in the random phase
approximation for the dielectric functions. The only difference is
the physics meaning of the ωi frequencies which in the quantum
theory correspond to the possible transitions among the different
quantum eigenstates which are a discrete number in the atomic level.
These summations are converted in a continuum spectrum if one
considers the solid and their determination requires the formulation
of the band structures for the magnetic charge entities which may
be formulated from the effective Hamiltonian of Equation (3). From
these band structures, the spectral absorptions corresponding to the
systems whose spectral transitions are fixed by the ωi-energies can be
determined as well as a valid approximation for the optical conductivity
in function of the frequencies of the external electromagnetic field
which interact with this system. As the optical conductivity is given
by ↔σ(ω) = ε0ωImχsΘ, when the dissipative force coming from the
Γ-parameter tends to zero, then the conductivity is given by

↔σ(ω) = ε0
π

2
ω2

pN (ω)Θ, (46)

where N (ω) is the density of states of magnetic charges for an
energy ~ω. The formalization of the solid state physics of these
magnetic charges and the determination of their band structures are
objectives of our investigation in progress. The relationships given
in Equations (37), (39), (45) and (46) show properties of the lineal
responses of dyonic matter under molecular electromagnetic fields seen
since the Classical Electrodynamics which can obviously serve as a
guide for researching experimental properties of these solids.

8. CONCLUDING REMARKS

One of the main goals of this paper is to analyze the different fields
within the spin-ices since there are some apparent contradictions in
the interpretation of the nature of these mimic magnetic charges.
For instance, recently it was published that the field produced by
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these monopoles is due to a potential energy Vm(r) = ±µ0

4π
Q2

m
r , but

however, the divergence of the generated magnetic field due to this
magnetic energy is zero, affirming, in addition, that the standard
Maxwell equations are valid in these spin-ices materials [22]. We
have established a distinction in the above third section between
the microscopic fields applicable to the molecular dimension of the
dumbbells and the average field concepts coming from the standard
Maxwell equations whose ∇ · 〈B〉 = 0 even in the spin-ice systems.
However, the concept of these average field equations (standard
Maxwell equations) do not seem to be useful in the molecular dumbbell
dimension. This analysis, in our opinion, clarifies this point and
destroys these apparent contradictions. The field equations for the
dumbbell charges have to be those corresponding to the microscopic
field equations such as explained in this third section. This vision
allows the connection of the micromagnets generated in the spin-ices
with the toy model of pole-antipole pairs whose strong attractive
interaction implies an extreme difficulty for detecting poles of a
determined sign in freedom space. However, within the matter, the
many-body system produces an intermediate interaction provoking a
certain weakness of this pole-antipole interaction and the consequent
breaking of the micromagnet under the presence of an external
magnetic field. This interplay between the interpole interaction and
that existing between the pole charges and the magnetic external
field in an environment conditioned by the dielectric and magnetic
responses of the material produces the magnetic pole gas [22]. Then,
the dynamic in this system is governed by the optical conductivity
and dielectric/magnetic responses. The classical calculation of these
responses is determined in the second part of this paper via the analysis
of the Clausius-Mossotti-like and Drude-Lorentz formalism applied to
the systems with magnetic charges.

The true novelty of the phenomenologies in spin-ices such as
the Coulomb state of magnetic charges [7], magnetricity [11, 12] and
other dual properties [33, 34] is a direct consequence of the breaking
of the binding among poles and antipoles in the so-called dumbbells.
These dumbbells are magnetic dipoles produced by the spin-flip of two
contiguous tetrahedron basis of the crystal, and their possible breaks
can be favored by the dielectric function of the system. Therefore the
dynamic of the spin-ices is conditioned by dielectric and permeability
responses which do allow the presence of entities with magnetic charge
swimming in the solid. This leads to a dual property whose dynamic is
similar to that of the electric charges in electrolytes such as measured
in 2009 [11, 12].

The difference existing between the average magnetic field in the



Progress In Electromagnetics Research, Vol. 121, 2011 175

spin configuration, 〈B′〉, and the average field of the dumbbell model,
〈B〉, whose relationship is that of Equation (11), implies that these
two models can be considered equivalent in static conditions when
〈me〉 ≡ Me = 0. On the contrary, if Me 6= 0, this difference between
the two fields of Equation (11) could imply a different magnetic
energy. This difference of magnetic energy would be considered as
the origin of the independent and possible deconfined movement of
the different magnetic poles in the dumbbell model. This independent
movement of the two poles of the micromagnets is not considered in
the standard Maxwell equations of the classical interpretation of the
magnetic configuration of the spin-ices.

Concerning the question posed in the introduction of this paper:
what type of monopoles are these which are present in spin-ices? We
have explained in previous sections that these monopoles are entities
which mimic the action of the magnetic charges to generate microscopic
and molecular fields, but the resulting macroscopic averaged magnetic
field has null divergence and, in addition, the magnitude of its magnetic
charge is not quantized since g = pm/d, where the lattice parameter
(d) can have as value any real number.

APPENDIX A. AVERAGE VALUES

When the magnetic field is generated by magnetic charges, the average
magnetic field generated by all gi-charges located in the small spherical
volume (∆V = 4

3πR3) is

〈b〉∆V = − 3
4πR3

K

4π

∑

i

∫

∆V
∇ gi

|r− ri|d
3r

= − 3
4πR3

K

4π

∑

i

gi

∮

∆S

n
|r− ri|dS

= − K

4πR3

∑

i

giri = −K

3
Pm, (A1)

where Pm is the polarization of magnetic charge dipoles formed by a
split of monopole-antimonopole confined pair. Analogously,

〈
e′

〉
∆V

= − 1
4πε0R3

∑

i

qiri = − 1
3ε0

Pe. (A2)

On the other hand, the average value of the magnetic field created
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by an electric current density Je, within this volume, is
〈
b′

〉
∆V

=
3

4πR3

µ0

4π

∫

∆V

∫

∆V
∇× Je(r′)

|r− r′|d
3r′d3r

=
3

4πR3

µ0

4π

∫

∆V

∮

∆S
n× Je(r′)

|r− r′|dSd3r′

=
3

4πR3

µ0

4π

∫

∆V

(∮

∆S

n
|r− r′|dS

)
× Je(r′)d3r′

=
µ0

4πR3

∫

∆V
r′ × Je(r′)d3r′ =

2µ0

4πR3
me =

2
3
µ0Me, (A3)

where Me is the macroscopic magnetization due to the electric
currents. Similarly, the average value of the electric field created by a
magnetic current density Jm within this volume is

〈e〉∆V =− K

4πR3

∫

∆V
r′ × Jm(r′)d3r′=− 2K

4πR3
mm = −2K

3
Mm, (A4)

where Mm is the macroscopic magnetization due to the magnetic
currents.

APPENDIX B. SOME PROPERTIES OF THE Θ-MATRIX

From the definition of Θ matrix

Θ ≡
(

cos2 ζ cos ζ sin ζ
cos ζ sin ζ sin2 ζ

)
⇒ Θ2 = Θ, det |Θ| = 0. (B1)

It is also convenient to define another matrix Θ′

Θ′ ≡ −ΘΩ =
( − cos ζ sin ζ cos2 ζ

− sin2 ζ cos ζ sin ζ

)
. (B2)

If Ξ is a symmetric matrix

Ξ ≡
(

X Z
Z Y

)
⇒ ΞΩΞ = det |Ξ|Ω, (B3)

since Θ is symmetric and Ω2 = −1
Θ′Θ=−ΘΩΘ = −det |Θ|Ω = 0
Θ′Θ′=−Θ′ΘΩ = 0 ⇒ ΘΩΘ′ = −Θ′Θ′ = 0.

ΘΘ′=−ΘΘΩ=−ΘΩ=Θ′ ⇒ Θ′ΩΘ′=−ΘΩΩΘ′=ΘΘ′=Θ′.
(B4)

For the split-charge polarization
P = ΛΘGmol ⇒ ΘP = P, Θ′P = 0, (B5)

and for the kinetic polarization
M = Λ′Θ′Gmol ⇒ Θ′M = 0, ΘΩM = 0, Θ′ΩM = M. (B6)
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