Vol. 33
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-08-14
Peer-to-Peer Localization in Urban and Indoor Environments
By
Progress In Electromagnetics Research B, Vol. 33, 339-358, 2011
Abstract
This paper presents a novel peer-to-peer or mobile-to-mobile localization scheme for general indoor and outdoor environments. In this scheme, two mobile nodes at arbitrary locations are able to locate each other without the need of Line-of-Sight (LOS) path between the two mobile device, and without the need for any reference devices such as GPS or land base beacons. Existing peer-to-peer localization techniques make use of Time of Arrival (TOA) and Angle of Arrival (AOA) of LOS and single bounce scattering paths to derive line of possible mobile device positions (LPMDs). The intersections of LPMDs are then used to estimate the unknown mobile device position - referred to as the Line Segment Intersection. However, in a heavy multipath environment with many multiple-bounce scattering paths, existing techniques require weighting factors and threshold values which are specifically chosen for that particular environment in order to select the LPMDs that correspond to LOS and single-bounce scattering paths for localization. Large localization error will occur if multiple-bounce scattering paths' LPMDs are mistakenly used for intersections. In addition, existing techniques also do not work well in a multipath environment with high level of TOA and AOA noises especially when the angles between LPMDs are small. The accuracy of the Line Segment Intersection also deteriorates as the distance traveled by multipath signals become comparable to each other. This renders the weighting and threshold values ineffective. This paper presents a novel Gaussian weighting process to remove the abovementioned limitations. The Gaussian weighting process also dramatically improves the accuracy of the localization. Experimental coupled with simulation results show that our proposed localization scheme outperforms existing Peer-to-peer localization technique by a significant margin of up to 83% and 54% in indoor and urban environments respectively especially under severe multipath propagation conditions and high level of TOA and AOA noises.
Citation
Siwen Chen, Soon Yim Tan, and Chee Kiat Seow, "Peer-to-Peer Localization in Urban and Indoor Environments," Progress In Electromagnetics Research B, Vol. 33, 339-358, 2011.
doi:10.2528/PIERB11070701
References

1. Patwari, N., J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal, "Locating the nodes: Cooperative localization in wireless networks," IEEE Signal Processing Mag., Vol. 22, 54-69, Jul. 2005.
doi:10.1109/MSP.2005.1458287

2. Sayed, A. H., A. Tarighat, and N. Khajehnouri, "Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information ," IEEE Signal Processing Mag., Vol. 22, 24-40, Jul. 2005.
doi:10.1109/MSP.2005.1458275

3. Wang, Z. H. and S. A. Zekavat, "A novel semi-distributed cooperative localization technique for MANET: Achieving high performance," Proc. IEEE Wireless Communications Networking Conf., 2414-2419, 2008.
doi:10.1109/WCNC.2008.425

4. Boukerche, A., H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, "Vehicular Ad Hoc networks: A new challenge for localization-based systems," Computer Communications, Vol. 31, No. 12, 2838-2849, Jul. 2008.
doi:10.1016/j.comcom.2007.12.004

5. Tan, S. Y. and H. S. Tan, "Modelling and measurements of channel impulse response for an indoor wireless communication system," Proc. IEE Microwaves, Antennas and Propagation Part H, Vol. 142, No. 5, 405-410, Oct. 1995.
doi:10.1049/ip-map:19952050

6. Jin, Y., W. S. Soh, and W. C. Wong, "Indoor localization with channel impulse response based fingerprint and nonparametric regression," IEEE Trans. Wireless Commun., Vol. 9, 1120-1127, 2010.
doi:10.1109/TWC.2010.03.090197

7. Tayebi, A., A, J. Gomez, F. S. De Adana, and O. Gutierrez, "Ray-tracing application to mobile localization in multipath indoor environments," Proc. ICEAA 2009, 412-415, Torino, Italy, Sep. 2009.

8. Deasy, T. P. and W. G. Scanlon, "Stepwise algorithms for improving the accuracy of both deterministic and probabilistic methods in WLAN-based indoor user Localization," Int. J. Wireless Information Networks, Vol. 11, Oct. 2004.

9. Lee, J. Y. and R. A. Scholtz, "Ranging in a dense multipath environment using an UWB radio link," IEEE J. Select. Areas Commun., Vol. 20, 1677-1683, Dec. 2002.

10. Tai, C. S., S. Y. Tan, and C. K. Seow, "A robust non-line-of-sight localization system in indoor environment," IET Electronics Letters, Vol. 46, No. 8, 593-595, 2010.
doi:10.1049/el.2010.2955

11. Bao-Yen Tsui, J., "Fundamentals of Global Positioning System Receivers: A Software Approach," John Wiley & Sons, 2005.

12. Liew, S. C., K. G. Tan, and T. S. Lim, "Investigation of direct A-GPS positioning for hybrid E-OTD/GNSS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 79-87, 2006.
doi:10.1163/156939306775777332

13. Chan, Y. T. and K. C. Ho, "A simple and efficient estimator for hyperbolic location," IEEE Trans. Signal Processing, Vol. 42, 1905-1915, Aug. 1994.
doi:10.1109/78.301830

14. Lui, K. W. K. and H. C. So, "Range-based source localisation with pure reflector in presence of multipath propagation," IEE Electronics Letters, Vol. 46, No. 13, 957-958, 2010.
doi:10.1049/el.2010.3431

15. Chueng, K. W., H. C. So, W.-K. Ma, Y. T. Chan, and , "Least square algorithms for time-of-arrival based mobile location," IEEE Trans. Signal Processing, Vol. 52, 1121-1128, Apr. 2004.
doi:10.1109/TSP.2004.823465

16. Alba, P. Z., V. Josep, and D. H. Brooks, "Closed form solution for positioning based on angle of arrival measurements," Proc. IEEE Int. Symp. Personal Indoor Mobile Radio Commun. Conf., Vol. 14, 1522-1526, 2002.

17. Patwari, N., A. O. Hero III, M. Perkins, N. S. Correal, and R. J. O. Dea, "Relative location estimation in wireless sensor networks," IEEE Trans. Signal Processing, Vol. 51, 2137-2148, Aug. 2003.
doi:10.1109/TSP.2003.814469

18. Zhang, V. Y. and A. K.-S. Wong, "Combined AOA and TOA NLOS localization with nonlinear programming in severe multipath environments," Proc. IEEE Trans. Wireless Commun. Networking Conf. (WCNC'09), 1-6, Apr. 2009.
doi:10.1109/T-WC.2009.070140

19. Tayebi, A., J. Gomez, F. Saez de Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments," Progress In Electromagnetic Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

20. Xie, Y., Y. wang, P. Zhu, and X. You, "Grid-search-based hybrid TOA/AOA location techniques for NLOS environments," IEEE Communications Letters, Vol. 13, No. 4, 254-256, 2009.
doi:10.1109/LCOMM.2009.082218

21. Jiang, L. and S. Y. Tan, "Geometrical-based statistical channel model for outdoor and indoor propagation environments," IEEE Trans. Vehicular Technology, Vol. 56, No. 6, 3587-3593, Nov. 2007.
doi:10.1109/TVT.2007.901055

22. Wang, X., Z. X. Wang, and B. O. Dea, "A TOA-based location algorithm reducing the errors due to Non-Line-of-Sight (NLOS) propagation," IEEE Trans. Vehicular Technology, Vol. 52, 112-116, Jan. 2003.
doi:10.1109/TVT.2002.807158

23. Khajehnouri, N. and A. H. Sayed, "A non-line-of-sight equalization scheme for wireless cellular location," Proc. ICASSP 2003, Vol. 6, 549-552, Apr. 2003.

24. Chen, P. C., "A non-line-of-sight error mitigation algorithm in location estimation," Proc. IEEE Wireless Communications Networking Conf., Vol. 1, 316-320, 1999.

25. Cong, L. and W. H. Zhuang, "Nonline-of-sight error mitigation in mobile location," IEEE Trans. Wireless Commun., Vol. 4, 560-572, Mar. 2005.
doi:10.1109/TWC.2004.843040

26. Xiong, L., "A selective model to suppress NLOS signals in angle of arrival (AOA) location estimation," Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., Vol. 1, 461-465, 1998.

27. Chan, Y. T., W. Y. Tsui, H. C. So, and P. C. Ching, "Time-of-arrival based localization under NLOS conditions," IEEE Trans. Vehicular Technology, Vol. 55, 17-24, Jan. 2006.
doi:10.1109/TVT.2005.861207

28. Borras, J., P. Hatrack, and N. B. Mandayam, "Decision theoretic framework for NLOS identification," Proc. IEEE Veh. Tech. Conf., Vol. 2, 1583-1587, 1998.

29. Bahillo Martinez, A., S. Mazuelas Franco, J. Prieto Tejedor, R. M. Lorenzo Toledo, P. Fernandez Reguero, and E. J. Abril, "Indoor location based on IEEE 802.11 round-trip time measurements with two-step NLOS mitigation," Progress In Electromagnetic Research B, Vol. 15, 285-306, 2009.
doi:10.2528/PIERB09050409

30. Qi, Y. H., H. Kobayashi, and H. Suda, "Analysis of wireless geolocation in a non-line-of-sight environment," IEEE Trans. Wireless Commun., Vol. 5, 672-681, Mar. 2006.

31. Shen, Y. and M. Z. Win, "Fundamental limits of wideband localization-Part 1: A general framework," IEEE Trans. Information Theory, Vol. 56, 4956-4980, Oct. 2010.

32. Seow, C. K. and S. Y. Tan, "Non line of sight localization in multipath environment," IEEE Trans. Mobile Computing, Vol. 7, No. 5, 647-660, May 2008.
doi:10.1109/TMC.2007.70780

33. Seow, C. K. and S. Y. Tan, "Localization of omni-directional mobile device in multipath environments," Progress In Electromagnetic Research, Vol. 85, 323-348, 2008.
doi:10.2528/PIER08090302

34. Miao, H. L., K. Yu, and M. J. Juntti, "Positioning for NLOS propagation: Algorithm derivations and cramer-rao bounds," Proc. ICASSP 2006, Vol. 4, 1045-1048, Jun. 2006.

35. Sottile, F., M. A. Spirito, M. A. Cacere, and J. Samson, "Distributed-weighted multidimensional scaling for hybrid peer-to-peer localization," Proc. IEEE Ubiquitous Positioning Indoor Navigation and Location Based Service Conf., Dec. 2010.

36. Ekambaram, V. N. and K. Ramchandran, "Distributed high accuracy peer-to-peer localization in mobile multipath environments," Proc. IEEE GlobeCom, Dec. 2010.

37. Stocia, P. and A. Nehorai, "MUSIC, maximum likelihood and Cramer-Rao Bound," IEEE Trans ACSSP, Vol. 37, 720-741, May 1989.
doi:10.1109/29.17564

38. Fluery, B. H., M. Tschudin, R. Heddergott, D. Dablhaus, and K. T. Perderson, "Channel parameter estimation in mobile radio environments using the SAGE algorithm," IEEE J. Selected Areas in Comm., Vol. 17, 434-450, Mar. 1999.
doi:10.1109/49.753729

39. Tan, S. Y. and H. S. Tan, "Improved three-dimensional ray tracing techniques for microcellular propagation models," IEE Electronics Letters, Vol. 31, 1503-1505, Aug. 1995.
doi:10.1049/el:19950991

40. Ang, T. W., S. Y. Tan, and H. S. Tan, "Analytical methods to determine diffraction points on multiple edges and cylindrical scatterers in UTD ray tracing," Microwave and Optical Technology Letters, Vol. 22, No. 5, 304-309, Sep. 1999.
doi:10.1002/(SICI)1098-2760(19990905)22:5<304::AID-MOP5>3.0.CO;2-E

41. Sun, Q., S. Y. Tan, and K. C. Teh, "Analytical formulae for path loss prediction in urban street -Grid microcellular environments," IEEE Trans. Vehicular Technology, Vol. 54, No. 4, 1251-1258, USA, Jul. 2005.
doi:10.1109/TVT.2005.851298

42. Tan, S. Y., M. Y. Tan, and H. S. Tan, "Multipath delay measurements and modelling for inter-floor wireless communications," IEEE Trans. Vehicular Technology, Vol. 49, No. 4, 1334-1341, Jul. 2000.
doi:10.1109/25.875253

43. Tan, S. Y. and H. S. Tan, "A microcellular communications propagation model based on uniform theory of diffraction and multiple image theory," IEEE Trans. Antennas and Propagation, Vol. 44, No. 10, 1317-1326, Oct. 1996.
doi:10.1109/8.537325