Vol. 33
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-08-12
The E-Pile+Smcg for Scattering from an Object Below 2D Soil Rough Surface
By
Progress In Electromagnetics Research B, Vol. 33, 317-337, 2011
Abstract
A rigorous fast numerical method called E-PILE+SMCG is introduced and then used in a Monte Carlo study of scattering from a three dimensional perfectly electrical conductor (PEC) object below lossy soil rough surface. This method is the three dimensional (3D) extendability of PILE (Propagation-Inside-Layer Expansion) method which is proposed for two dimensional (2D) scattering problem. The rough surface with Gaussian profile is used to emulate the realistic situation of statistically rough surface, while the tapered incident wave is chosen to reduce the truncation error. The 3D angular correlation function (ACF) and bistatic scattering coefficient (BSC) are studied and applied to the detection of a target embedded in the clutter. The ACF is computed by using numerical method with circular azimuthal angle averaging technique. Because of its success in suppressing the clutter scattering, the technique appears attractive in real life implementation.
Citation
Wei-Jie Ji, and Chuang-Ming Tong, "The E-Pile+Smcg for Scattering from an Object Below 2D Soil Rough Surface," Progress In Electromagnetics Research B, Vol. 33, 317-337, 2011.
doi:10.2528/PIERB11061004
References

1. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique," Progress In Electromagnetic Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506

2. Ishimaru, A., J. D. Rockway, and Y. Kuga, "Rough surface Green's function based on the first-order modified perturbation and smoothed diagram methods," Waves Random Media, Vol. 10, 17-31, 2000.
doi:10.1088/0959-7174/10/1/302

3. O'Neill, K., R. F. Lussky, and K. D. Paulsen, "Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric," IEEE Trans. Geosci. Remote Sensing, Vol. 34, 367-376, 1996.
doi:10.1109/36.485114

4. O'Neill, K., "Broadband bistatic coherent and incoherent detection of buried objects beneath randomly rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 891-898, 2000.
doi:10.1109/36.841972

5. O'Neill, K., "Exploration of innovative radar sensing schemes for subsurface object detection," Proc. IGARSS'97, 1135-1137, Singapore, 1997.

6. Dogaru, T. and L. Carin, "Time-domain sensing of targets buried under a rough air-ground interface," IEEE Trans. Antennas Propagat., Vol. 46, 360-372, 1998.
doi:10.1109/8.662655

7. Johnson, J. T. and R. J. Burkholder, "A study of scattering from an object below a rough surface," IEEE Trans. Geosci. Remote Sensing, Vol. 42, 59-66, 2004.
doi:10.1109/TGRS.2003.815670

8. El-Shenawee, M., C. M. Rappaport, E. L. Miller, and M. B. Silevitch, "Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: Use of the steepest descent fast multipole method," IEEE Trans. Geosci. Remote Sensing, Vol. 39, 1174-1182, 2001.
doi:10.1109/36.927436

9. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Numerical Simulations, New York, 2000.
doi:10.1002/0471224308

10. Tsang, L., C. H. Chang, and H. Sangani, "A banded matrix iterative approach to monte carlo simulations of scattering of waves by large scale random rough surface problems: TM case," Electron. Lett., Vol. 29, 1666-1667, 1993.
doi:10.1049/el:19931109

11. Tsang, L., C. H. Chang, H. Sangani, A. Ishimaru, and P. Phu, "A banded matrix iterative approach to monte carlo simulations of large-scale random rough surface scattering: TE case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 9, 1185-1200, 1993.
doi:10.1163/156939393X00200

12. Torrungrueng, D., H. T. Chou, and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from two-dimensional large scale perfectly conducting random rough surfaces with the forward backward mehod," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 1656-1668, 2000.
doi:10.1109/36.851965

13. Jandhyala, V., E. Michielssen, S. Balasubramaniam, and W. C. Chew, "A combined steepest descent fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 36, 738-747, 1998.
doi:10.1109/36.673667

14. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

15. Déchamps, N., N. De Beaucoudrey, C. Bourlier, and S. Toutain, "Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-Inside-Layer expansion method," J. Opt. Soc. Amer. A, Vol. 23, 359-369, 2006.
doi:10.1364/JOSAA.23.000359

16. Bourlier, C., G. Kubické, and N. Déchamps, "A fast method to compute scattering by a buried object under a randomly rough surface: PILE combined to FB-SA," J. Opt. Soc. Amer. A, Vol. 25, 891-902, 2008.
doi:10.1364/JOSAA.25.000891

17. Le, C. T. C., Y. Kuga, and A. Ishimaru, "Angular correlation function based on the second-order Kirchhoff approximation and comparison with experiments," J. Opt. Soc. Amer. A, Vol. 13, 1057-1066, 1996.
doi:10.1364/JOSAA.13.001057

18. Kuga, Y., C. Lee, A. Eshimaru, and L. Aies-Sengers, "Analytical, experimental and numerical studies of angular memory signatures of waves scattered from one-dimensional rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 34, 1300-1307, 1996.
doi:10.1109/36.544555

19. Feng, S., C. Kane, P. A. Lee, and A. D. Stone, "Correlations and °uctuations of coherent wave transmission through disordered media," Phys. Rev. Lett., Vol. 61, No. 7, 834-837, 1988.
doi:10.1103/PhysRevLett.61.834

20. Michel, T. R. and K. A. O'Donnell, "Angular correlation functions of amplitudes scattered from a one-dimensional, perfectly conducting rough surface," J. Opt. Soc. Amer. A, Vol. 9, No. 8, 1374-1384, 1992.
doi:10.1364/JOSAA.9.001374

21. Zhang, G., L. Tsang, and Y. Kuga, "Studies of angular correlation function of scattering by random rough surfaces with and without a buried object," IEEE Trans. Geosci. Remote Sensing, Vol. 35, 444-453, 1997.
doi:10.1109/36.563283

22. Zhang, G., L. Tsang, and K. Pak, "Angular correlation function and scattering coe±cient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface," J. Opt. Soc. Amer. A, 2995-3002, Dec. 1998.
doi:10.1364/JOSAA.15.002995

23. Rao, S. M., D. R. Wlton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 32, 409-418, 1982.
doi:10.1109/TAP.1982.1142818