Vol. 118
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-06
Electric Field Discontinuity-Considered Effective-Permittivities and Integration-Tensors for the Three-Dimensional Finite-Difference Time-Domain Method
By
Progress In Electromagnetics Research, Vol. 118, 335-354, 2011
Abstract
Electric field Discontinuity-Considered Effective-Permittivities and Integration-Tensors (DC-EP&IT) for the three-dimensional Finite-Difference Time-Domain (FDTD) method are derived using a contour-path approach that considers the jump in the electric field at the interface of two dielectric materials. This is a natural but not so obvious extension to the work by Mohammandi et al. [1] from two to three-dimensions. Proposed method is verified by comparing with the exact Mie theory as well as the staircase, volume-averaged and subpixel methods.
Citation
Yong-Gu Lee, "Electric Field Discontinuity-Considered Effective-Permittivities and Integration-Tensors for the Three-Dimensional Finite-Difference Time-Domain Method," Progress In Electromagnetics Research, Vol. 118, 335-354, 2011.
doi:10.2528/PIER11060304
References

1. Mohammadi, A., H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 13, 10367-10381, 2005.
doi:10.1364/OPEX.13.010367

2. Kaneda, N., B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 1645-1649, 1997.
doi:10.1109/22.622937

3. Yu, W. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, 25-27, 2001.
doi:10.1109/7260.905957

4. Dey, S. and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1737-1739, 1999.
doi:10.1109/22.788616

5. Farjadpour, A., D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Optics Letters, Vol. 31, 2972-2974, 2006.
doi:10.1364/OL.31.002972

6. Oskooi, F., C. Kottke, and S. G. Johnson, "Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing," Optics Letters, Vol. 34, 2778-2780, 2009.
doi:10.1364/OL.34.002778

7. Deinega, A. and I. Valuev, "Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method," Optics Letters, Vol. 32, 3429-3431, 2007.
doi:10.1364/OL.32.003429

8. Mohammadi, A., T. Jalali, and M. Agio, "Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 16, 7397-7406, 2008.
doi:10.1364/OE.16.007397

9. Lee, J.-Y. and N.-H. Myung, "Locally tensor conformal FDTD method for modeling arbitrary dielectric surfaces," Microwave and Optical Technology Letters, Vol. 23, 245-249, 1999.
doi:10.1002/(SICI)1098-2760(19991120)23:4<245::AID-MOP17>3.0.CO;2-V

10. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Physical Review B, Vol. 48, 8434, 1993.
doi:10.1103/PhysRevB.48.8434

11. Cychosz, J. M., W. N. Waggenspack, and Jr., "Intersecting a ray with quadric surface," Graphics Gems III, 275-283, Academic Press Professional, Inc., 1992.

12. Sung, S.-Y. and Y.-G. Lee, "Trapping of a micro-bubble by non-paraxial Gaussian beam: Computation using the FDTD method," Optics Express, Vol. 16, 3463-3473, 2008.
doi:10.1364/OE.16.003463

13. Wiscombe, W. J., "Improved Mie scattering algorithms," Appl. Opt., Vol. 19, 1505-1509, 1980.
doi:10.1364/AO.19.001505