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Abstract—Electric field Discontinuity-Considered Effective-Permitt-
ivities and Integration-Tensors (DC-EP&IT) for the three-dimensional
Finite-Difference Time-Domain (FDTD) method are derived using a
contour-path approach that considers the jump in the electric field at
the interface of two dielectric materials. This is a natural but not so
obvious extension to the work by Mohammandi et al. [1] from two to
three-dimensions. Proposed method is verified by comparing with the
exact Mie theory as well as the staircase, volume-averaged and subpixel
methods.

1. INTRODUCTION

A popular numerical tool for solving electromagnetic problems is the
Finite-Difference Time-Domain (FDTD) method. FDTD discretizes
the problem space using cells with particular values of electric-
permittivity and magnetic-permeability and calculates Maxwell’s
equations in a leap-frog manner. Inherent problem with this approach
is that non-planar interfaces between two different materials can only
be approximated. One of the crudest forms of approximations is the
staircase method because of the jagged nature of the approximated
interface between two materials.

There have been various efforts to overcome the errors from
approximations. Kaneda et al. [2] proposed a method that obtains
effective dielectric constants for cells containing two different materials.
This method first calculates a sectional dielectric constant by the area-
weighted sum of two different materials. Subsequently, the average of
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the inverse of this value is calculated along the direction normal to the
section. Finally, the inverse of this average obtained in each axis is
used as the effective dielectric constant. Yu and Mittra [3] proposed
much simpler approach by only considering the length-weighted sum
of the dielectric constants of two materials along each axis. Dey and
Mittra [4] used the volume-averaged sum of the dielectric constants of
two materials.

Above three methods do not take account for the interface normal
directions. Recently, a new method called subpixel smoothing [5–7]
was introduced that accounts for the normal direction of the interface
between two materials as well as their volumes ratio within a cell. The
contour-path method [1, 8] which is the two-dimensional analogy of this
paper also considers the interface normal direction and the volumes
ratio within a cell. However, the derivations of the two methods are
quite different. Subpixel smoothing starts by postulating a dielectric
tensor that was selected assuming that parallel and normal electric
field experience different dielectric constants [9]. This dielectric tensor
is then smoothed where the smoothing kernel becomes a Dirac delta
function when the kernel envelope normal to the interface reaches
zero. This smoothed dielectric tensor is finally tested by substituting
in the first-order corrected angular frequency which is obtained by
expanding an eigensolution of the vector Helmholtz equation in terms
of the small change in the dielectric so that the limiting value is
well defined [10]. On the other hand, contour-path method uses
the integral form of the Ampere and Faraday laws and obtains a
tensor form of the dielectric constant in a straight forward manner.
The obtained dielectric tensor is unique based on series of steps that
involve the consideration of boundary conditions between dielectric
discontinuities. Subpixel smoothing was successfully applied to three-
dimensions but the contour-path method was only applied in two-
dimensions. This paper presents a three-dimensional extension of the
contour-path method and it is shown that the two methods agree in
the effective dielectric tensor. This finding is important because it
gives justification to the selection of the effective dielectric tensor in
the subpixel smoothing method.

While paying much attention to the discontinuity of the electric
field vector, we found it to be natural to apply similar procedures to the
line integration of the electric field in the integral form of the Faraday’s
law. Previous contour-path method only considered the electric field
discontinuity in the integral form of the Ampere’s law. The gain in this
second part was found to be significant in the numerical computation
of the scattering problems investigated when the discretization error is
large.



Progress In Electromagnetics Research, Vol. 118, 2011 337

In this paper, we have compared our method to the staircase,
volume-averaged and subpixel smoothing methods. We will be only
considering dielectric, nonmagnetic materials.

2. CONTOUR-PATH METHOD FOR DIELECTRICS

This section gently introduces the derivation of contour-path method
in three-dimensions. We will first discuss Ampere and Faraday
laws in three-dimensions and then move on to effective-permittivities.
We then present the electric field Discontinuity-Considered Effective-
Permittivities and Integration-Tensors (DC-EP&IT) that are the main
topics of this paper.

2.1. Ampere and Faraday Laws

Figure 1 illustrates Yee’s cell. A cell stores two vectors that represent
an electric field and a magnetic field. Rather than storing the three
values of a vector at the cell’s center, Yee’s scheme was to store the
values at shifted locations. This shifted storage is very well suited for
representing Ampere and Faraday laws. For nonmagnetic dielectric
materials, Ampere and Faraday laws become
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Figure 1. Yee’s cell showing electric and magnetic field vector
components at shifted locations.
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where E and H are electric and magnetic fields; ε and µ are electric-
permittivity and magnetic-permeability; dS and dL are differential
surface and length elements whose directions are normal to the surface
and parallel to the curve, respectively.

For example, the Ampere law in the z-axis at z = (k + 1/2)∆h can
be written as,
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where ∆h and k̂ are grid distance and the unit vector in the z-axis,
z-axis, respectively. Notice we have deferred the dot product after the
integration. And also note that since the Yee’s cell only stores one field
component at each grid location, the missing components are obtained
by simply interpolating four adjacent Yee’s grid locations. This scheme
is used throughout this paper.

When we calculate the terms for the Faraday law, we need to
calculate the line integration of the electric field. For example in the
y-axis, we get
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where î and k̂ are the unit vectors in the x and z-axes, respectively.
We have similarly deferred the dot product after the integration.

Notice we have preserved the line integration in Eq. (3) but did
not do so in Eq. (2). The purpose is for improving the accuracy.
Recall that we are dealing with nonmagnetic materials where magnetic-
permeability is uniform and there is no discontinuity in the magnetic
fields. Therefore, we can safely evaluate the line integration in Eq. (2).
However, there is a dielectric discontinuity in Eq. (3) and doing so
would increase errors.

In order to evaluate Eqs. (2) and (3), we need to understand
an important distinction between the electric field value stored at
a grid location and the actual electric field value at that particular
spatial location. The important understanding is that they are
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different. Electric field value stored represents that of the whole
cell. Mohammadi et al. [1, 8] assumed they are equal. Initial
attempt assuming they are equal resulted in large errors and a new
interpretation based on volume-averaged approach was derived that is
explained below.

2.2. Representative Electric Field Vector

The volume integral of the electric field in a given time step inside a

cubic cell with length ∆h centered at i, j, k + 1
2 is E|n+ 1

2

i,j,k+ 1
2

(∆h)3.

When the cell is composed of two dielectric materials of constants ε1

and ε2, the electric field will be discontinuous as E1 and E2. According
to the boundary conditions, we know that ε1nn · E1 = ε2nn · E2

since D⊥,1 = D⊥,2 across dielectrics, where nn is a dyadic, formed by
juxtaposing a pair of interface normal vectors n and n. Also, we can
write (I− nn) ·E1 = (I− nn) ·E2 since E‖,1 = E‖,2 across dielectrics,
where I is an identity dyadic. Thus with the two boundary conditions
and V1 and V2 representing the fractional volumes of material 1 and 2,
the volume integral can be represented either entirely with E1 or E2.
That is
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We have placed ⊥, ‖ below some terms to highlight perpendicular and
parallel terms. The above can be simplified as follows depending on
which form of the electric field is used.(
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There is no significance in which form to use: Eq. (5) or Eq. (6), when
dealing with planar incident waves and planar dielectric interfaces.
However, when non-planar waves and interfaces are concerned, it
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becomes more appropriate to use Eq. (5) when V1 > V2 and Eq. (6),
otherwise. The reason is that the normal and parallel terms are derived
approximations obtained by multiplying with nn and thus it makes
more sense to keep these less exact terms multiplied by the smaller
volume.

In summary, Eqs. (5) and (6) equal to E|n+ 1
2

i,j,k+ 1
2

(∆h)3 , and they

give the relations between what is actually stored at the grid versus
E1 and E2.

2.3. Electric Field Discontinuity-considered
Effective-permittivities

In FDTD, the electric field is stored at grid locations and the
integration shown on the left of Ampere’s law in Eq. (2) is calculated
by the simple product of the electric field and the effective dielectric
constant. In the conventional scheme, the effective dielectric constant
is a single value. However, in order to consider the discontinuity in the
electric field, this has to be a tensor. The effective dielectric tensor of
the top (pink) cell illustrated in Figure 2 is ε|i,j,k+ 1

2
and those in the x

and y axes are ε|i+ 1
2
,j,k and ε|i,j+ 1

2
,k, respectively. Note that each cell

simultaneously resides in two Yee’s cells that are abutting in the z, x
or y-directions. In summary, we will be using three dielectric tensors
in a given Yee’s cell. The staircase and volume-averaged methods
implemented for comparisons also used these shifted permittivities in
three axes, although they are single values not tensors.

There are several steps involved in deriving the Discontinuity-
Considered Effective-Permittivities (DC-EP). We first apply the
integration form of Ampere’s law (See Appendix A1 for details) and
integrate the result along the normal direction of the cross section. We
repeat this process for x, y and z-axes. Subsequently, we combine the
three scalar equations into one vector equation to get the following
dielectric tensors, depending on which electric field (1 or 2) was used
(See Appendix A2 for details). With some lengthy work, it can be
shown that the two equations are actually identical and it does not
matter which form to use.
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It is also interesting to see that the dielectric tensors in Eq. (7),
although quite different as they stand, are identical to that of subpixel
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smoothing [5]. Similar derivations can be applied for the x and y
components where the tensor forms are the same.

2.4. Electric Field Discontinuity-considered
Integration-tensors

We can also apply similar technique to the line integration for the
electric field crossing dielectric discontinuities. For example, the line
integration of the electric field in the z direction can assume either
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depending which fraction of volume is greater. Derivations are given
in Appendix A3. When V1 > V2, Eq. (8) is used and Eq. (9) is used
otherwise. L1 and L2 represent the fractional lengths of material 1 and
2. Electric field Discontinuity-Considered Integration-Tensors (DC-IT)
shown in Eqs. (8) and (9) are used to evaluate the right hand side
integration terms in Faraday’s law in Eq. (3). Similar derivations can
be done for x and y components where the tensor forms are the same.
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Figure 2. Effective-permittivities in x, y and z-axes.
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Since generally, L1 6= V1 and L2 6= V2, Eq. (8) and Eq. (9) cannot

be simplified to ∆h Ez|n+ 1
2

i,j,k+ 1
2

and the equality we saw for the dielectric

tensors in Eq. (7) does not exist between Eq. (8) and Eq. (9).

3. RESULTS

We have implemented the proposed DC-EP and DC-IT in a three-
dimensional FDTD code. To amplify the calculation errors, we have
chosen to simulate a scattering by 100 nm diameter spherical object
with high (12/1) dielectric constant ratio (object to the medium) using
very coarse to fine cell sizes experiencing a planar wave of wavelengths
ranging from 400 nm to 1100 nm. Scattered-field formulation was
used to introduce the incident beam to the simulated electromagnetic
field. More information about our FDTD code can be found in Sung
et al. [12].

Justification to the selected electric-permittivities is needed. It is
well known that the wavelength of an electromagnetic wave compresses
when dielectric constant increases. When uniform grid lengths are
employed in the computational space, compression effectively makes
the cell coarser as compared to that with lower dielectric constant.
It would be reasonable to conclude that the effect of higher dielectric
constant ratio would resemble that of coarser cells and it would also be
gradual. Therefore, we believe a dramatic change in the errors based
on a critical dielectric contrast ratio would be unlikely. The particular
(12/1) permittivity ratio was chosen based on a high contrast example
in a real application (a photonic crystal material [5]).

Accuracies of normal directions, fractional volumes and lengths
are important in computing DC-EP and DC-IT. We have approximated
them by sampling methods and details are described in Appendix B. It
is true that the integration by using sampled points can possibly reduce
the accuracy of the computation. We could make the integration
analytic for specific surface equations but that would make the method
much more difficult to implement because various singular cases and
special cases need to be addressed. Note this is also a problem
for subpixel smoothing where the dielectric and inversed dielectric
constants as well as interface normals need to be computed. For the
current results, we have used 19 sampling points on each axis. For
general cases that would make only about 5% of maximum error on
each axis and 15% of maximum error in 3-dimensions.

Based on high dielectric constant ratio and big cell size,
discretization error was purposely made more prominent than other
sources of errors such as phase velocity, scattering field formulation
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and the perfectly matched layers. For the results, we have used the
direct electric field difference error,

Error = |EFDTD −EMie| / |EMie| , (10)
averaged for all Yee’s cell on a bounding box whose planes are at two
grid distance away from the sphere along each axis. Analytical Mie
calculations were done by a code derived from the MIEV package [13]
where the spatial offset of each component of the electric field vector
was considered. The log value of this error is plotted in Figure 3
for frequency at 1100 nm, as a function of cell size which equals to
wavelength divided by NLambda. It can be seen that the DC-EP&IT
and subpixel smoothing show far better results than the staircase and
volume-averaged methods. The staircase method is equivalent to the
classical FDTD method. Not shown but similar tendencies were shown
for λ = 400 nm, λ = 650 nm and λ = 900 nm.

The FDTD method employs finite differences as approximations
to both the spatial and temporal derivatives that appear in Maxwell’s
equations. An examination of a difference formula for the second
derivative on an equidistant grid leads to O((∆h)2) errors, In other
words, it would show perfect-quadratic convergence in ideal conditions.
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EP&IT for frequencies at 400 nm, 650 nm, 900 nm and 1100 nm.

This implies that if ∆h is reduced by a factor of 10, the error in the
approximation should be reduced by a factor of 100. However, due
to other sources of errors, quadratic convergence shown in Figure 3 is
seldom achieved. In practical sense, most methods show perfect-linear
O(∆h) or slower convergence. DC-EP&IT and subpixel methods show
quadratic convergence up to NLamda = 40 and a linear convergence
thereafter.

The error difference between subpixel smoothing and DC-EP&IT
is highlighted in Figure 4 at λ = 400 nm, λ = 650 nm, λ = 900 nm and
λ = 1100 nm, where a positive value denotes DC-EP&IT is better in
terms of accuracy. The error enhancement as compared to the subpixel
method is quite large on average about 10% at low subdivisions and
reaches as high as 15%. Not much gain at λ = 400 nm is shown due to
the relative fine cell size.

4. CONCLUSION

The discontinuity of the electric field in the dielectric discontinuity
was carefully considered in the integration form of the Ampere and
the Faraday laws to come up with the electric field Discontinuity-
Considered Effective-Permittivities and Integration Tensors (DC-
EP&IT). The accuracy of the proposed method in comparison with
the staircase, volume-averaged and subpixel methods was evaluated for
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the Mie scattering problem. It showed that the DC-EP&IT performed
better than the other methods especially when the discretization error
was large. Especially, the benefit as compared to the subpixel method
was clearly shown when the cell size was large. This makes DC-EP&IT
very well suited for tackling large problems where the size of the cell
cannot be made small due to the limit in the computer memory size.
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APPENDIX A. ELECTRIC
DISCONTINUITY-CONSIDERED DERIVATIONS

A.1. Sectional Effective-permittivities

To derive the sectional effective-permittivities in tensor forms we first
start with an imaginary sectional cut of the Yee’s cell at z = zcut as
shown in Figure A1.

According to the boundary condition between two dielectric
materials of constants ε1 and ε2, we know that ε1nn · E1 = ε2nn · E2

since D⊥,1 = D⊥,2 across dielectrics and (I− nn) ·E1 = (I− nn) ·E2

since E‖,1 = E‖,2 across dielectrics. Thus with A1 and A2 representing

(a) (b)

Figure A1. Sectional effective-permittivities at dielectric interfaces.
(a) Area of material 1 is greater than that of material 2; (b) Area of
material 2 is greater than that of material 1. No differentiation whether
one area is larger than the other is necessary.
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the fractional area of material 1 and 2, the left hand side surface
integration in Eq. (2) in a difference form becomes
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In summary, depending which electric field value is used; Eq. (A2)
and Eq. (A4) are the effective-permittivities, εz|i,j,z=zcut

, at the
location z = zcut.

Similar derivations can be obtained in x and y directions and the
results are summarized in Eq. (A5). Notice each dielectric constant
can have two forms depending which electric field is used. î, ĵ and k̂
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are unit vectors in x, y and z-axes, respectively.
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Figure A2. Effective-permittivities as a function of z location.
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A.2. Derivations of Discontinuity-considered
Effective-permittivities

Equations (A2) and (A4) hold at arbitrary cut location for
infinitesimally thin sheet. For example in the z-axis, we can have
many of these within the cell centered at i, j, k + 1/2. Figure A2
illustrates one possible thin sheet located at the center of this cell.
When Eq. (A2) form of effective dielectric tensor is used, these can be
represented using an auxiliary variable w as(

∆h

∆t
ε1,z|i,j,k+ 1

2
+w ·

(
E1|n+ 1

2

i,j,k+ 1
2
+w

− E1|n−
1
2

i,j,k+ 1
2
+w

))
· k̂

−Hx|ni,j+ 1
2
,k+ 1

2
+w + Hx|ni,j− 1

2
,k+ 1

2
+w+Hy|ni+ 1

2
,j,k+ 1

2
+w−Hy|ni− 1

2
,j,k+ 1

2
+w ,

(A6)
where w ∈ [−1

2 , +1
2

]
.

If we assume (E1|n+ 1
2

i,j,k+ 1
2
+w

−E1|n−
1
2

i,j,k+ 1
2
+w

) ≈ (E1|n+ 1
2

i,j,k+ 1
2

−E1|n−
1
2

i,j,k+ 1
2

) is constant, by integrating along the z direction we get
(

∆h

∆t
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2

ε1,z|i,j,k+ 1
2
+w dw ·

(
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We can also do a similar integration along the x and y direction within
the cell centered at i, j, k + 1/2 to get
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“representative value” refers to an average value in the one dimensional
integration. It becomes appropriate to discard the representative value
notation if the cell is sufficiently small and we are considering the
value at the mid-plane of the cell. It can be shown that the three
integrations of the tensor dielectric constant in x, y and z directions
are identical. Thus we can drop the x, y and z subscript and represent
these integrations as

ε1|i,j,k+ 1
2

=
∫ + 1

2

− 1
2

ε1,x|i+w,j,k+ 1
2
dw =

∫ + 1
2

− 1
2
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2
dw

=
∫ + 1

2

− 1
2

ε1,z|i,j,k+ 1
2
+w dw = (V1ε1 + V2ε2) I + V2 (ε1 − ε2)nn. (A9)

This is also true for the duel dielectric tensor
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2

=
∫ + 1

2

− 1
2
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2
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∫ + 1
2
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2

− 1
2

ε2,z|i,j,k+ 1
2
+w dw = (V1ε1 + V2ε2) I + V1 (ε2 − ε1)nn. (A10)

Using Eq. (A9), Eqs. (A7) and (A8) can be combined leading to a
vector equation,
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∆t
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2
·
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where
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And similarly, we can show that for the duel,
∆h
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·
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= Hcurl. (A12)

Substituting Eqs. (5) and (A9) into (A11), we get

∆h
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((V1ε1 + V2ε2) I + V2 (ε1 − ε2)nn) ·

(
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Similarly by substituting Eqs. (6) and (A10) into (A12), we get
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With some lengthy work, we can show that the resulting combined
dielectric tensors in Eqs. (A13) and (A14) are equal,

A.3. Derivations of Discontinuity-considered
Integration-tensors

We can also apply similar technique to the line integration for the
electric field crossing dielectric discontinuities as we did for the surface
integration. For example, the line integration of the electric field in
the z direction can assume either(∫ k+1
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or (∫ k+1

k
E|n+ 1

2
i,j,z dz

)
· k̂

= ∆h

(
I ·E2|n+ 1

2
i,j,k L2+

(
ε2

ε1
nn · E2|n+ 1

2
i,j,k + (I− nn) ·E2|n+ 1

2
i,j,k

)
L1

)
·k̂

⊥ ‖
= ∆h

((
I +

(
ε2

ε1
− 1

)
L1nn

)
·E2|n+ 1

2
i,j,k

)
· k̂

= ∆h

((
I+

(
ε2

ε1
−1

)
L1nn

)
·
(
I+

(
ε2

ε1
−1

)
V1nn

)−1

· E|n+ 1
2

i,j,k+ 1
2

)
· k̂, (A16)

depending which fraction of volume is greater. When V1 > V2,
Eq. (A15) is used and Eq. (A16) is used otherwise. L1 and L2 represent
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Figure A3. Line integration based on the dielectric medium. (a)
Length of material 1 is greater than that of material 2; (b) Length
of material 2 is greater than that of material 1. No differentiation
whether one length is larger than the other is necessary.

the fractional lengths of material 1 and 2. Figure A3 illustrates two
cases depending which material segment is longer. It is important to
understand that the selection of the proper equation is not dictated by
which segment is longer. Similar derivations can be achieved for other
line integrations in x and y directions where the tensor forms are the
same.

APPENDIX B. COMPUTING NORMALS AND AREAS

Exact computation of the normal directions used in Eqs. (7), (8) and
(9) can be quite demanding. We show how we have done this by
approximations. We first calculate the normals at the boundaries by
intersecting the edges of integrating voxel with the dielectric surface
and subsequently average these to obtain the normal. Intersection
between a sphere and a line segment was done by using the code from
Cychosz et al. [11]. Figure B1(a) shows a case when the dielectric
surface crosses two oppositely located edges at one face of a voxel while
Figure B1(b) shows that of two adjacent edges. In Figure B1(a), n̄ =
(n30 + n12) /2 and in Figure B1(b), n̄ = (n30 + n23) /2. Besides these
edges, other crossing edges within the voxel need to be considered,
which is omitted here for brevity.

The fractional volumes in Eqs. (7), (8) and (9) are also
numerically obtained by distributing uniformly sampled points
in the integrating square and performing point location query
with respect to the dielectric surface. Figure B2 illustrates the
sampled points on regular grid points. The ratio of the number
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(a) (b)

Figure B1. Computing the normal direction as an average. (a) The
dielectric surface crosses two oppositely located edges, one between
v3 and v0, the other between v1 and v2. n30 and n12 are the normal
directions at the intersections between the surface and the two edges;
(b) The dielectric surface crosses two adjacently located edges, one
between v3 and v0, the other between v2 and v3. n30 and n23 are
the normal directions at the intersections between the surface and the
edges.

(a) (b)

Figure B2. Computing the areas. (a) Area of material 1 is greater
than that of material 2; (b) Area of material 2 is greater than that
of material 1. No differentiation whether one area is larger than the
other is necessary.

of inside points to the total number of sampled points multiplied
by the area of the integrating square becomes A2. A1 is simply
obtained by subtracting A2 from the area of the integrating
square. Afterwards, the areas along the normal direction at various
altitudes are similarly computed and added. The sample points
are {(u∆h/(2m+1), v∆h/(2m+1), w∆h/(2m+1))|u, v, w ∈ 0,±1,±2, . . . ,±m} ,
when the surface normal is in the z direction. Sample points in other
directions can be similarly obtained. For the results in this paper, we
have used m = 9.
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