Vol. 33
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-24
Scalar Radiative Transfer in Discrete Media with Random Oriented Prolate Spheroids Particles
By
Progress In Electromagnetics Research B, Vol. 33, 21-44, 2011
Abstract
Monte Carlo scalar radiative transfer simulation of light scattering in plane parallel slab is not a simple problem, especially in the study of angular distribution of light intensity. Approximate phase function such as Henyey-Greenstein is often used to simulate the Mie phase function. But even for sphere particle this function is sometimes a poor approximation of real phase function. For a spheroids particle, the angular scattering characteristics cannot be approximated as H-G phase function with sufficient accuracy. In this paper, we study the transmission characteristics of light in parallel plane layer with randomly oriented prolate spheroids aerosol particles. Instead of using H-G phase function, we use sampling method to simulate real phase function of spheroid directly. A database of phase function with various scattering angle and azimuth angles for given spheroids aerosol particle is developed. The transmission characteristics calculated by scattering phase function sampling method and equivalent volume sphere H-G phase function method are compared. The effect of prolate spheroids particle size and form factor on optical transmission properties is analyzed. It is found that although the construction database of phase function takes a certain amount of computing time, for spheroid particles the sample phase function method, compared with the H-G phase function simulation method, can greatly improve the accuracy of transmittance calculation.
Citation
Lu Bai, Zhen-Sen Wu, Hai-Ying Li, and Tuo Li, "Scalar Radiative Transfer in Discrete Media with Random Oriented Prolate Spheroids Particles," Progress In Electromagnetics Research B, Vol. 33, 21-44, 2011.
doi:10.2528/PIERB11042902
References

1. Plass, G. N. and G. W. Kattawar, "Monte Carlo calculations of light scattering from clouds," Appl. Opt., Vol. 7, 415-419, 1968.
doi:10.1364/AO.7.000415

2. Wang, L. H., H., S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, Vol. 47, 131-146, 1995.
doi:10.1016/0169-2607(95)01640-F

3. Wang, L. H., S. L. Jacques, and L. Q. Zheng, "CONV --- Convolution for responses to a finite diameter photon beam incident on multilayered tissues," Computer Methods and Programs in Biomedicine, Vol. 54, 141-150, 1997.
doi:10.1016/S0169-2607(97)00021-7

4. Balbas, E. M. and P. J. French, "Shape based Monte Carlo code for light transport in complex heterogeneous tissues," Opt. Express, Vol. 15, 14086-14098, 2007.
doi:10.1364/OE.15.014086

5. Kienle, A., L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt., Vol. 35, 2304-2314, 1996.
doi:10.1364/AO.35.002304

6. Prahl, S. A., M. Keijzer, S. L. Jacques, and A. J.Welch, "A Monte Carlo model of light propagation in tissue," Proc. SPIE, 102-111, 1989.

7. Moumini, N. and C. Baravian, "Incoherent light transport in anisotropic media: Form factor influence for oriented prolate ellipsoids," J. Quant. Spectrosc. Radiat. Transfer, Vol. 110, 1545-1565, 2009.
doi:10.1016/j.jqsrt.2009.01.021

8. Berdnik, V. and V. Loiko, "Radiative transfer in a layer with oriented spheroidal particles," J. Quant. Spectrosc. Radiat. Transfer, Vol. 93, 369-382, 1999.
doi:10.1016/S0022-4073(99)00025-4

9. Chang, P. C. Y., J. G. Walker, E. Jakeman, and K. I. Hopcraft, "Polarization properties of light multiply scattered by nonspherical Rayleigh particles," Waves Random Media, Vol. 9, 415-426, 1999.
doi:10.1088/0959-7174/9/3/309

10. Bai, L., S. Q. Tang, Z. S. Wu, P. H. Xie, and S. M. Wang, "Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band," Acta Physica Sinica, Vol. 59, 1749-1755, 2010.

11. Bai, L., Z. S. Wu, S. Q. Tang, M. Li, P. H. Xie, and S. M. Wang, "Study on phase function in Monte Carlo transmission characteristics of poly-disperse aerosol," Optical Engineering, Vol. 50, 016002-1-8, 2011.
doi:10.1117/1.3530109

12. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic, New York, 1978.

13. Henyey, L. C. and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J., Vol. 93, 70-83, 1941.
doi:10.1086/144246

14. Toublanc, D., "Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations ," Appl. Opt., Vol. 35, 3270-3274, 1996.
doi:10.1364/AO.35.003270

15. Berrocal, E., D. Y. Churmakov, V. P. Romanov, M. C. Jermy, and I. V. Meglinski, "Crossed source detector geometry for novel spray diagnostic: Monte Carlo simulation and analytical results," Appl. Opt., Vol. 44, 2519-2529, 2005.
doi:10.1364/AO.44.002519

16. Berrocal, E. and I. V. Meglinski, "New model for light propagation in highly inhomogeneous poly disperse turbid media with applications in sprays diagnostics," Opt. Express, Vol. 13, 9181-9195, 2005.
doi:10.1364/OPEX.13.009181

17. Berrocal, E., D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, "Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution ," Opt. Express, Vol. 15, 10649-10665, 2007.
doi:10.1364/OE.15.010649

18. Meglinski, I. V., V. L. Kuzmin, D. Y. Churmakov, and D. A. Greenhalgh, "Monte Carlo simulation of coherent effects in multiple scattering," Proc. R. Soc. A, Vol. 461, 43-53, 2005.
doi:10.1098/rspa.2004.1369

19. Blaunstein, N., "Theoretical aspects of wave propagation in random media based on quanty and statistical field theory," Progress In Electromagnetics Research, Vol. 47, 135-191, 2004.
doi:10.2528/PIER03111702

20. Tateiba, M. and Z. Q. Meng, "Wave scattering from conducting bodies embedded in random media --- Theory and numerical results," Progress In Electromagnetics Research, Vol. 14, 317-361, 1996.

21. Barabanenkov, Y. N., L. M. Zurk, and M. Y. Barabanenkov, "Single scattering and diffusion approximations for modified radiative transfer theory of wave multiple scattering in dense media near resonance," Progress In Electromagnetics Research, Vol. 15, 27-61, 1997.
doi:10.2528/PIER95102300

22. Zhang, Y. J., A. Bauer, and E. P. Li, "A novel coupled T-matrix and microwave network approach for multiple scattering from parallel semicircular channels with eccentric cylindrical inclusions," Progress In Electromagnetics Research, Vol. 53, 109-133, 2005.
doi:10.2528/PIER04083102

23. Zhang, Y. J. and E. P. Li, "Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
doi:10.2528/PIER07030503

24. Setijadi, E., A. Matsushima, N. Tanaka, and G. Hendrantoro, "Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model," Progress In Electromagnetics Research, Vol. 99, 339-354, 2009.
doi:10.2528/PIER09102609

25. Wang, L., J. A. Kong, K. H. Ding, T. L. Toan, F. R. Baillarin, and N. Floury, "Electromagetic scattering model for rice canopy based on Monte Carlo simulation," Progress In Electromagnetics Research, Vol. 52, 153-171, 2005.
doi:10.2528/PIER04080601

26. Gao, D. and L. Gao, "Tunable lateral shift through nonlinear composites of nonspherical particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.
doi:10.2528/PIER09102404

27. Setijadi, E., A. Matsushima, N. Tanaka, and G. Hendrantoro, "Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model," Progress In Electromagnetics Research, Vol. 99, 339-354, 2009.
doi:10.2528/PIER09102609

28. Wu, Z. S. and Y. P. Wang, "Study of scattering of plane wave though discrete random medium by direct analogue and statistical estimation," Acta Physica Sinica, Vol. 37, 698-704, 1988 (in Chinese).

29. Asano, S. and G. Yamamoto, "Light scattering by a spheroidal particle," Appl. Opt., Vol. 14, 29-49, 1975.

30. Asano, S., "Light scattering properties of spheroidal particles," Appl. Opt., Vol. 18, 712-723, 1979.
doi:10.1364/AO.18.000712

31. Moffatt, D. L. and E. M. Kennaugh, "The axial echo area of a perfectly conducting prolate spheroid," IEEE Trans. Antennas Propagat., Vol. 13, 401-409, 1965.
doi:10.1109/TAP.1965.1138438

32. Sinha, B. P. and R. H. MacPhie, "Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization and angle of incidence," Radio Sci., Vol. 12, 171-184, 1977.
doi:10.1029/RS012i002p00171

33. Mishchenko, M. I., "Light scattering by randomly oriented axially symmetric particles," J. Opt. Soc. Am. A, Vol. 8, 871-882, 1991.
doi:10.1364/JOSAA.8.000871

34. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic, San Diego, Calif., 2000.

35. Li, L. W., T. S. Yeo, and M.-S. Leong, "Bistatic scattering and backscattering of electromagnetic waves by conducting and coated dielectric spheroids: A new analysis using mathematica package," Progress In Electromagnetics Research, Vol. 31, 225-245, 2001.
doi:10.2528/PIER00071706

36. Li, L. W., M. S. Yeo, and M. S. Leong, "EM fields inside a prolate spheroid due to a thin circular loop: A higher-order perturbation approach," Progress In Electromagnetics Research, Vol. 34, 219-252, 2001.
doi:10.2528/PIER01062201

37. Li, L. W., X. K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory, Wiley, New York, 2002.
doi:10.1002/0471221570

38. Han, Y. P. and Z. S. Wu, "Scattering of a spheroidal particle illuminated by a Gaussian beam," Appl. Opt., Vol. 40, 2501-2509, 2001.
doi:10.1364/AO.40.002501

39. Kotsis, A. D. and J. A. Roumeliotis, "Electromagnetic scattering by a metallic spheroid using shape perturbation method," Progress In Electromagnetics Research, Vol. 67, 113-134, 2007.
doi:10.2528/PIER06080202

40. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

41. Waterman, P. C., "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D, Vol. 3, 825-839, 1971.
doi:10.1103/PhysRevD.3.825

42. Mishchenko, M. I., "T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database," J. Quant. Spectrosc. Radiat. Transfer, Vol. 88, 357-406, 2004.

43. Mishchenko, M. I., G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, "Comprehensive T-matrix reference database: A 2004{2006 update," J. Quant. Spectrosc. Radiat. Transfer, Vol. 106, 304-324, 2007.
doi:10.1016/j.jqsrt.2007.01.022

44. Mishchenko, M. I., G. Videen, N. G. Khlebtsov, T. Wriedt, and N. T. Zakharova, "Comprehensive T-matrix reference database: A 2006{2007 update," J. Quant. Spectrosc. Radiat. Transfer, Vol. 109, 1447-1460, 2008.
doi:10.1016/j.jqsrt.2008.01.001

45. Mishchenko, M. I., "Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transfer, Vol. 60, 309-324, 1998.
doi:10.1016/S0022-4073(98)00008-9

46. Doicu, A. and T. Wriedt, "Null-field method with discrete sources to electromagnetic scattering from composite objects," Opt. Commun., Vol. 190, 13-17, 2001.
doi:10.1016/S0030-4018(01)01060-4

47. Doicu, A., "Null-field method to electromagnetic scattering from uniaxial anisotropic particles," Opt. Commun., Vol. 218, 11-17, 2003.
doi:10.1016/S0030-4018(03)01164-7

48. Chew, W. C., Y. M. Wang, and L. Gürel, "Recursive algorithm for wave-scattering using windowed addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 11, 1537-1560, 1992.
doi:10.1163/156939392X00058

49. Chew, W. C., "Recurrence relations for three-dimensional scalar addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1-6, 133-142, 1992.
doi:10.1163/156939392X01075

50. Chew, W. C. and Y. M. Wang, "Efficient ways to compute the vector addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 5, 651-665, 1993.
doi:10.1163/156939393X00787

51. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: A review," J. Quant. Spectrosc. Radiat. Transfer, Vol. 55, 535-575, 1996.
doi:10.1016/0022-4073(96)00002-7

52. Bates, D. E. and J. N. Porter, "AO3D: A Monte Carlo code for modeling of environmental light propagation," J. Quant. Spectrosc. Radiat. Transfer, Vol. 109, 1802-1824, 2008.
doi:10.1016/j.jqsrt.2008.01.017

53. Levoni, C., M. Cervino, R. Guzzi, and F. Torricella, "Atmospheric aerosol optical properties: A database of radiative characteristics for di®erent components and classes," Appl. Opt., Vol. 36, 8031-8041, 1997.
doi:10.1364/AO.36.008031