1. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201
2. Cheng, Y., M. J. Deen, and C. H. Chen, "MOSFET modeling for RF IC design," IEEE Trans. Electron. Devices, Vol. 52, 1286-1303, Jul. 2005.
doi:10.1109/TED.2005.850656
3. Han, S., J. Kim, and D. P. Neikirk, "Impact of pad de-embedding on the extraction of interconnect parameters," IEEE APS, Vol. 1, 76-81, 2006.
4. Vandamme, E. P., D. M. M.-P. Schreurs, and G. Van Dinther, "Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on wafer RF test-structures," IEEE Trans. Electron. Devices, Vol. 48, No. 4, 737-742, 2001.
doi:10.1109/16.915712
5. Kolding, T. E., "A four-step method for de-embedding gigahertz on-wafer CMOS measurements," IEEE Trans. Electron. Devices, Vol. 47, 727-742, Apr. 2001.
6. Adem, A. and M. Ismail, "Pad de-embedding in RF CMOS," Circuit and System, 8-11, 2001.
7. Li, X., J. Gao, and G. Boeck, "Printed dipole antenna design by arti¯cial neural network modeling for RFID application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 16, No. 6, 607-611, 2006.
doi:10.1002/mmce.20183
8. Li, X., J. Gao, J.-G. Yook, and X. Chen, "Bandpass filter design by artificial neural network modeling," Asia-Pacific Microwave Conference, Vol. 2, 713-716, 2005.
9. Zhang, Q. J., K. Gupta, C. Devabhaktuni, and K. Vijay, "Artificial neural networks for RF and microwave design --- from theory to practice," IEEE Trans. Microwave Theory Tech., Vol. 51, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179
10. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural networks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806
11. Pascht, A., et al. "Parasitic extraction for silicon MOSFETS," International IEEE MTT/AP Workshop on MMIC Design, Packaging and System Applications , 23-24, Oct. 1998.
12. Cheng, J., et al. "Analysis and modeling of the pads for RF CMOS based on EM simulation," Microwave Journal, Vol. 53, No. 10, 96-107, Oct. 2010.
13. Ayestarán, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594
14. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240
15. Jin, L., C. L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1061-1069, 2006.
doi:10.1163/156939306776930259
16. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917
17. Acikgoz, H., Y. Le Bihan, O. Meyer, and L. Pichon, "Microwave characterization of dielectric materials using bayesian neural networks ," Progress In Electromagnetics Research C, Vol. 3, 169-182, 2008.
doi:10.2528/PIERC08030603
18. Vakula, D. and N. V. S. N. Sarma, "Fault diagnosis of planar antenna arrays using neural networks," Progress In Electromagnetics Research M, Vol. 6, 35-46, 2009.
doi:10.2528/PIERM09011204
19. Michalski, J. J., "Artificial neural networks approach in microwave filter tuning ," Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010.
doi:10.2528/PIERM10053105
20. Li, X., J. Gao, and G. Boeck, "Microwave nonlinear device modeling using artificial neural network," Semicond. Sci. Technol., Vol. 21, 833-840, 2006.
doi:10.1088/0268-1242/21/7/001
21. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
doi:10.1163/156939310791036412
22. Shi, X., K. S. Yeo, W. M. Lim, M. A. Do, and C. C. Boon, "A SPICE compatible model of on-wafer coupled interconnects for CMOS FRICs ," Progress In Electromagnetics Research, Vol. 102, 287-299, 2010.
doi:10.2528/PIER10010608
23. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2537-2545, 2010.
doi:10.1163/156939310793675619
24. Sacha, G.-M., F. D. B. Rodriguez Ortiz, E. Serrano Jerez, and P. Varona Martinez, "Generalized image charge method to calculate electrostatic magnitudes at the nanoscale powered by artificial neural networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1145-1155, 2010.
doi:10.1163/156939310791586160
25. Jacobs, J. P. and J. P. de Villiers, "Gaussian-process-regression-based design of ultrawide-band and dual-band CPW-FED slot antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1763-1772, 2010.