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Abstract—In this paper, an approach for the pad modeling of the
test structure for Metal Oxide Semiconductor Field Effect Transistor
(MOSFET) up to 40 GHz is presented. The approach is based on a
combination of the conventional equivalent circuit model and artificial
neural network (ANN). The pad capacitances and series resistors
are directly obtained from EM (electromagnetic) simulation of the S
parameters with different size of pad and operating frequency. The
parasitic elements in the test structure can be modeled by using a sub
artificial neural network (SANN). So the pad capacitances and series
resistors can be regarded as functions of the dimensions of the pad
structure and operating frequencies by using SANN. Good agreement
between the ANN-based modeling and EM simulation results has been
demonstrated. In order to remove the impact of the parasitic elements,
the de-embedding procedure for MOSFET device using ANN-based
pad model is also demonstrated.
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1. INTRODUCTION

With fast growth in the radio-frequency (RF) wireless communications
market, the demand for high performance but low cost RF solutions
is rising. This advanced performance of MOSFET is attractive for HF
circuit design in view of a system-on-a-chip realization, where digital,
mixed-signal baseband, and RF transceiver blocks would be integrated
on a single chip. Design RF circuits which include MOSFETs requires
accurate models to describe the RF behavior of MOSFET used in
the circuit. However, the MOSFET is so small that it is impossible
to measure its RF behavior by placing the coplanar probes directly
on the devices. A test structure with probe pads and device under
test (DUT) is needed for RF measurement. Usually we measure
S parameter of the test structure to obtain the RF parameters of
DUT. However, the existence of probe pads significantly affects the
S parameter measurement of the DUT. The pad is sensitive to the
substrate effects due to its large metal plate area and limits the
performance of the devices or circuits using pads [1–3, 21–23].

In order to remove the parasitic impact of the pad, pad de-
embedding is needed. Three ways are followed for pad de-embedding:
One is obtaining the S parameter of pad by utilizing EM simulation.
Another one is measuring the S parameter of the dummy device
which excludes the DUT in the test structure [4–6]. The third one
is a combination of the artificial neural network technique and the
equivalent circuit model which based on the physical structure [1].
Artificial neural network which is used for building complex and
nonlinear relationship between a set of input and output data has
widely used in RF and microwave design recently [7–10]. The third
method can solve the problem of quick and accurate modeling of pad.
But in Ref. [1], low loss substrate is considered and it is not applicable
to silicon substrate that is used in MOSFET devices. Comparing with
low loss substrate, the equivalent circuit and the pad modeling for
silicon substrate are more complicated. The introduction of resistors
in the equivalent circuit model will make the parameter extraction
more time-consuming. Furthermore, the series resistors are frequency-
dependency that we must take frequency as a input parameter in the
ANN model. As a result, the process of setting up ANN model for pad
is more complicated than low loss substrate. The aim of this paper is
to model the pad modeling of high loss substrate.

In this paper, an approach for the pad modeling of the test
structure for RF MOSFET up to 40GHz is presented. The approach
is based on a combination of the conventional equivalent circuit model
and artificial neural network (ANN). Each parasitic element of pad
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in the equivalent circuit model can be regarded as a SANN. The
pad capacitances and series resistors are directly obtained from EM
(electromagnetic) simulation of the S parameters with different size
of pad and operating frequency. Good agreement between the ANN-
based modeling and EM simulation results has been obtained.

The organization of this paper is as follows: Section 2 describes the
equivalent circuit model of the pad. Section 3 introduces the artificial
neural network. The ANN-based modeling technique is described
in Section 4. The de-embedding procedure for MOSFET devices is
demonstrated in Section 5. The conclusion is shown in Section 6.

2. EQUIVALENT CIRCUIT MODEL OF PAD

A typical pad profile on silicon substrate and its corresponding
equivalent circuit model are shown in Figures 1(a) and (b),
respectively [11]. Where Cpg and Cpd represent the pad capacitance
of the gate and drain between the signal pad and the ground pad
respectively. Cpgd represents the coupling capacitance between the gate
and drain pad. Rpg and Rpd represent the substrate loss resistance of
the gate pad, the drain pad, respectively. All the parasitic elements
can be determined as follows [12]:

Y =
[

Y11 Y12

Y21 Y22

]
=

[
Ypg + Ypgd −Ypgd

−Ypgd Ypd + Ypgd

]
(1)

where Y is the matrix obtained from the conversion of S parameter that
is measured from pad structure. Provided that (ωRpgCpg)2 + 1 ≈ 1,
then we can get

Ypg = Y11 + Y12 =
1

Rpg + 1
jωCpg

=
jωCpg + Rpg(ωCpg)2

(ωRpgCpg)2 + 1

≈ Rpg(ωCpg)2 + jωCpg (2)
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Figure 1. Pad and its equivalent circuit model. (a) Pad structure.
(b) Equivalent circuit model.
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Ypd = Y22 + Y21 =
1

Rpd + 1
jωCpd

=
jωCpd + Rpd(ωCpd)2

(ωRpdCpd)2 + 1

≈ Rpd(ωCpd)2 + jωCpd (3)
Ypgd = −Y12 = jωCpgd (4)

From the above expression (2)–(4), we can get

Cpg =
Im(Ypg)

2πf
=

Im(Y11 + Y12)
2πf

(5)

Cpd =
Im(Ypd)

2πf
=

Im(Y22 + Y21)
2πf

(6)

Rpg = Re
(

1
Ypg

)
= Re

(
1

Y11 + Y12

)
(7)

Rpd = Re
(

1
Ypd

)
= Re

(
1

Y22 + Y21

)
(8)

Cpgd =
Im(Ypgd)

2πf
=
−Im(Y12)

2πf
(9)

where f is the frequency. For the symmetrical structure, we can get
Rpg = Rpd and Cpg = Cpd.

3. ANN TECHNIQUE INTRODUCTION

ANN is widely used in the optimization of passive components
and microwave nonlinear device modeling [13–20, 24, 25]. The most
commonly used and simplest network architecture called Multilayer
Perceptron Neural Network (MLPNN). A MLPNN consists of three
layers: an input layer, an output layer and an intermediate or hidden
layer. The neurons in the input layer only act as buffer for distributing
the input signals to neurons in hidden layer. Each neuron in hidden
layer sums up its input signals after weighting them. Depending on the
complexity of the input response and desired output, the number of
hidden layers and neurons at each layer can vary. Training a network
consists of adjusting its weights using learning algorithms. It is a very
powerful approach for building complex and nonlinear relationship
between a set of input and output data. For this reason, artificial
neural networks recently gained attention as a fast and flexible tool to
microwave modeling and design.

The neural network architecture used in this paper is the MLPNN.
In theory, these networks can perform any complex nonlinear mapping.
A typical MLPNN consists of an input layer, a hidden layer and an
output layer is shown in Figure 2.
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Figure 2. Three-layer MLPNN structure.

For given input x, the output of three-layer MLPNN can be
computed by:

y = w3
0 +

n∑

i=1

w3
i σ(Zi) = w3

0 +
n∑

i=1

w3
i σ


w2

i0 +
m∑

j=1

w2
ijxj


 (10)

where wl
ij represents the weight of the link between the jth neuron

of the (l − 1)th layer and the ith neuron of the lth layer, w3
0 and w2

i0
represent the bias of each neuron of output and hidden layers, σ(·) is an
activation function. The most commonly used hidden layer activation
function is the sigmoid function given by

σ(x) =
1

1 + e−x
(11)

The ANN model is then trained to learn the relationship between
input and output by using training data which is a sample of input-
output data. The purpose of training is to determine the ANN model
parameters, i.e., neural network weights wl

ij , such that the ANN model
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predicted output best matches that of the training data. The testing
data (new sample of input-output data) is used to test the accuracy of
the ANN model.

4. ANN-BASED PAD MODELING TECHNIQUE

ANN-based microwave device modeling technique combines the
conventional equivalent circuit and the artificial neural network
modeling technique. Each intrinsic nonlinear circuit element can be
modeled by using a SANN.

The pad capacitances and series resistors are determined by
different size of pad and operating frequency. So the pad capacitances
and series resistors can be regarded as functions of the dimensions of
the pad structure and operating frequencies by using SANN. The input
parameters values of ANN are shown in Table 1.

The pad capacitances and series resistors can be described by using
SANN as follows:

Cpg = f
Cpg

ANN(W,L, S, Freq) (12)

Cpd = f
Cpd

ANN(W,L, S, Freq) (13)

Table 1. Variable pad input parameters values.

Parameter Notation Values
Width W 30–100µm
Length L 30–100µm

Slot S 30–300µm
Frequency Freq 0–40GHz

f       (W, L, S, Freq)
ANN

Cpgd

pg pdf      (W, L, S, Freq)
ANN

C
f      (W, L, S, Freq)
ANN

C

f      (W, L, S, Freq)
ANN

f      (W, L, S, Freq)
ANN

pg pdR R

Figure 3. ANN-based equivalent circuit model of pad.
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Rpg = f
Rpg

ANN(W,L, S, Freq) (14)

Rpd = f
Rpd

ANN(W,L, S, Freq) (15)

Cpgd = f
Cpgd

ANN(W,L, S, Freq) (16)

where fANN represents ANN of each element of the pad. It can be found
that the pad capacitances and series resistors are functions of W , L,
S, Freq. The corresponding ANN-based equivalent circuit model of
pad is shown in Figure 3.
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Figure 4. Pad capacitances versus its width (L = 60µm, S = 180 µm
and Freq = 10 GHz).
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Figure 5. Pad capacitances versus its length (W = 60µm, S =
180µm and Freq = 10 GHz).
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Figure 6. Pad capacitances versus its slot (W = 60µm, L = 60µm
and Freq = 10 GHz).
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Figure 7. Pad capacitances versus its frequency (W = 60 µm,
L = 60µm and S = 180µm).

The training data is obtained from Agilent ADS over a frequency
range of 0 to 40 GHz by different pad dimensions. The training is
conducted by using Quasi-Newton method until the difference between
the training data and the output from the ANN model has reached less
than 1%. 16 neurons are used in the hidden layer.

Figures 4–11 show the pad capacitances and series resistors versus
with width W , length L, slot S and frequency Freq, respectively.
Because the pad structure is symmetrical, the characteristic of Cpg

and Rpg is identical with that of Cpd and Rpd.
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Figure 8. Series resistors versus its width (L = 60µm, S = 180µm
and Freq = 10 GHz).
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Figure 9. Series resistors versus its length (W = 60 µm, S = 180µm
and Freq = 10 GHz).

From Figures 4–11, we can see the comparison between the data
obtained from the ANN model and the EM simulated data for the
pad. When different size of device or circuit is considered, its pad
performance can be obtained from the ANN model efficiently instead
of EM simulation.
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Figure 10. Series resistors versus its slot (W = 60µm, L = 60 µm
and Freq = 10 GHz).
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Figure 11. Series resistors versus its frequency (W = 60µm, L =
60µm and S = 180 µm).

5. PAD DE-EMBEDDING TECHNIQUE FOR MOSFET

Now we consider the pad presented by SANN and DUT together as
shown in Figure 12.

In this paper, MOSFET devices are fabricated by using 0.18µm
RF CMOS technology. The test structure dimension is 250× 350µm2,
with pad dimension W × L× S = 50× 50× 150µm3.

A measurement result from a calibrated probe is the response of
the device under test including parasitics associated with probe pads.
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Figure 12. ANN-based pad and DUT network model.

DUT

Device pattern Dummy pattern

Figure 13. Device and dummy layout.

Pad capacitances can not be removed by using calibration method. In
order to get the DUT response from measurement, the pad parasitics
must be removed. So the dummy devices are introduced. Layout
patterns, one including the DUT while the other (dummy) excluding
it, are fabricated on the same wafer as shown in Figure 13. Here,
we examine both pad de-embedding and probe pad layout techniques
since they are closely related. Proper probe layout rules in addition to
technology design rules must be followed.

The pad de-embedding procedure can be summarized as
follows [6]:

1) Calibrate the network analyzer up to the tips of the probe by using
either on-wafer or off-wafer calibration standard patterns.

2) Verify the calibration on the measurement wafer. Verification of
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Figure 14. Comparison of S11 magnitude of pad between ANN-based
method and EM simulated result.
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Figure 15. Comparison of S21 magnitude of pad between ANN-based
method and EM simulated result.

the calibration can be done using high-Q inductors or capacitors.
Verification will not be correct if it is done on the standard pattern
where calibration is done. This is because those patterns are
already used for calibration.

3) Measure the S parameters of the dummy device and convert them
to Y parameters.

4) Measure the S parameters of the DUT and convert them to Y
parameters.

5) Subtract the dummy Y parameters from DUT Y parameters, and
convert the results back to S parameters.
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Figure 16. Comparison of S11 phase of pad between ANN-based
method and EM simulated result.

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40

EM

ANNS
  
_

p
h

a
se

 (
d

e
g

re
e
)

Freq (GHz)

2
1

Figure 17. Comparison of S21 phase of pad between ANN-based
method and EM simulated result.

By using ANN-based pad modeling technique, the S parameters
of pad are shown in Figures 14–17 and good agreement is obtained
between ANN-based model and EM simulated results.

By using ANN-based pad de-embedding technique, the parasitic
effect is removed and the result is shown in Figure 18. From it we can
see that the pad capacitances and series resistors affect more seriously
to S22 and S12 than the magnitude of S11 and phase and magnitude
of S21.
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Figure 18. Comparison of MOSFET devices performance with and
without pad (a) S11 parameter. (b) S22 parameter. (c) S21 parameter.
(d) S12 parameter.

6. CONCLUSION

An approach of pad modeling technique based on a combination of
the conventional equivalent circuit model and artificial neural network
(ANN) is applied in order to investigate the pad effect to the high loss
substrate on-wafer devices. Pad capacitances and series resistors for
pad have been modeled by using sub artificial neural networks. Good
agreement between the ANN-based modeling and EM simulated results
demonstrates the validity of the pad modeling technique. Finally, the
result of the pad de-embedding by using the proposed pad modeling
technique is shown to demonstrate the impact of pad to MOSFET
devices.
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