Vol. 112
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-25
Coupling Impedance Between Planar Coils Inside a Layered Media
By
Progress In Electromagnetics Research, Vol. 112, 381-396, 2011
Abstract
In this paper a semi-analytical representation of the coupling impedance between coils composed of filamentary turns located between two layered media is provided on the basis of the spectral expansion of the fields involved in the system. Both media are composed of several layers of homogeneous materials characterized by their physical properties occupying, respectively, a half-space bounded by a plane. The domain in the middle, where the coils are placed, has vacuum properties. The development is focused on misaligned circular coils placed in parallel planes with respect to the media boundaries. Two different behavioral descriptions have been considered: first, the system is made up entirely of magnetic insulators and the coupling impedance is therefore purely inductive; second, at least one medium is an electrical conductor and, as a consequence, an additional resistive component emerges when the coupling impedance is evaluated. In the latter case, the coupling impedance exhibits a frequency dependence due to the dispersive effects associated with the induced currents generated in the conductive media. The model developed is verified by means of a comparison between numerical and experimental results.
Citation
Claudio Carretero, Rafael Alonso, Jesus Acero, and Jose Miguel Burdio, "Coupling Impedance Between Planar Coils Inside a Layered Media," Progress In Electromagnetics Research, Vol. 112, 381-396, 2011.
doi:10.2528/PIER10112911
References

1. Maxwell, J. C., A Treatise on Electricity and Magnetism, Dover, 1954 (reprint from the original from 1891).

2. Babic, S. I., F. Sirois, and C. Akyel, "Validity check of mutual inductance formulas for circular fllaments with lateral and angular misalignments," Progress In Electromagnetics Research M, Vol. 8, 15-26, 2009.
doi:10.2528/PIERM09060105

3. Akyel, C., S. I. Babic, and M.-M. Mahmoudi, "Mutual inductance calculation for non-coaxial circular air coils with parallel axes," Progress In Electromagnetics Research, Vol. 91, 287-301, 2009.
doi:10.2528/PIER09021907

4. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 4, 453-462, 2008.
doi:10.1109/TMAG.2008.917128

5. Conway, J. T., "Inductance calculations for circular coils of rectangular cross section and parallel axes using bessel and struve functions," IEEE Trans. Magn., Vol. 46, No. 1, 75-81, 2010.
doi:10.1109/TMAG.2009.2026574

6. Ravaud, R., G. Lemarquand, V. Lemarquand, S. I. Babic, and C. Akyel, "Mutual inductance and force exerted between thick coils," Progress In Electromagnetics Research, Vol. 102, 367-380, 2010.
doi:10.2528/PIER10012806

7. Ravaud, R., et al. "Cylindrical magnets and coils: Fields, forces and inductances," IEEE Trans. Magn., Vol. 46, No. 9, 3585-3590, 2010.
doi:10.1109/TMAG.2010.2049026

8. Zierhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Trans. Biomed. Eng., Vol. 43, No. 7, 704-714, 1996.
doi:10.1109/10.503178

9. Soma, M., D. C. Galbraith, and R. L. White, "Radio-frequency coils in implantable devices: Msalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. 34, No. 4, 276-282, 1987.
doi:10.1109/TBME.1987.326088

10. Costa, E. M. M., "Planar transformers excited by square waves," Progress In Electromagnetics Research, Vol. 100, 55-68, 2010.
doi:10.2528/PIER09110103

11. Peng, L., O. Breinbjerb, and N. A. Mortensen, "Wireless energy transfer through non-resonant magnetic coupling," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11, 1587-1598, 2010.
doi:10.1163/156939310792149795

12. Wei, X. C., E. P. Li, Y. L. Guan, and Y. H. Chong, "Simulation and experimental comparison of different coupling mechanism for the wireless electricity transfer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 925-934, 2009.
doi:10.1163/156939309788355180

13. Su, Y. P., L. Xun, and S. Y. R. Hui, "Mutual inductance calculation of movable planar coils on parallel surfaces," IEEE Trans. Power Electron., Vol. 24, No. 4, 1115-1123, 2009.
doi:10.1109/TPEL.2008.2009757

14. Roshen, W. A., "Analysis of planar sandwich inductors by current images," IEEE Trans. Magn., Vol. 26, No. 5, 2880-2887, 1990.
doi:10.1109/20.104901

15. Luquire, J. W., W. E. Deeds, and C. V. Dodd, "Alternating current distribution between planar conductors," J. Appl. Phys., Vol. 41, No. 10, 3983-3991, 1970.
doi:10.1063/1.1658399

16. Hurley, W. G. and M. C. Duffy, "Calculation of self- and mutual impedances in planar sandwich inductors," IEEE Trans. Magn., Vol. 33, No. 3, 2282-2290, 1997.
doi:10.1109/20.573844

17. Acero, J., et al. "Modeling of planar spiral inductors between two multilayer media for induction heating applications," IEEE Trans. Magn., Vol. 42, No. 11, 3719-3729, 2006.
doi:10.1109/TMAG.2006.882308

18. Lupi, S., "Planar circular coils for induction heating," Electrowarme International, Vol. 37, No. 9, 319-326, 1979.

19. Carretero, C., et al. "Modeling mutual impedances of non-coaxial inductors for induction heating applications," IEEE Trans. Magn., Vol. 44, No. 11, 4115-4118, 2008.
doi:10.1109/TMAG.2008.2003333

20. Burke, S. K. and M. E. Ibrahim, "Mutual impedance of air-cored coils above a conducting plate," J. Phys. D: Appl. Phys., Vol. 37, No. 13, 1857-1868, 2004.
doi:10.1088/0022-3727/37/13/021

21. Michalski, K. A. and R. D. Nevels, "On the use of the coulomb gauge in solving source-excited boundary value problems of electromagnetics," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 9, 1328-1333, 1988.
doi:10.1109/22.3679

22. Tsang, L., et al. "Evaluation of the Green's function for the mixed potential integral equation (MPIE) method in the time domain for layered media," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1559-1571, 2003.
doi:10.1109/TAP.2003.813631

23. Dreher, A., "A new approach to dyadic Green's function in spectral domain," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1297-1302, 1995.

24. Weiss, S. J. and O. Kilic, "A vector transform solution procedure for solving electromagnetic problems in cartesian coordinates," IEEE Antennas Wireless Propag. Lett., Vol. 9, 291-294, 2010.
doi:10.1109/LAWP.2010.2047230

25. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995 (reprint from the original from 1990).

26. Dural, G. and M. I. Aksun, "Closed-form Green's functions for general sources and stratified media," IEEE Trans. Microwave Theory. Tech., Vol. 43, No. 7, 1545-1552, 1995.
doi:10.1109/22.392913

27. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 508-519, 1997.
doi:10.1109/8.558666

28. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, CRC Press, 2000.
doi:10.1201/9781420058277

29. Chew, W. C. and T. M. Habashy, "The use of vector transforms in solving some electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 43, No. 7, 871-879, 1986.
doi:10.1109/TAP.1986.1143919

30. Edminister, J. E., Theory and Problems of Electric Circuits, Schaum, 1965.