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Abstract—In this paper a semi-analytical representation of the
coupling impedance between coils composed of filamentary turns
located between two layered media is provided on the basis of the
spectral expansion of the fields involved in the system. Both media are
composed of several layers of homogeneous materials characterized by
their physical properties occupying, respectively, a half-space bounded
by a plane. The domain in the middle, where the coils are placed, has
vacuum properties. The development is focused on misaligned circular
coils placed in parallel planes with respect to the media boundaries.
Two different behavioral descriptions have been considered: first, the
system is made up entirely of magnetic insulators and the coupling
impedance is therefore purely inductive; second, at least one medium
is an electrical conductor and, as a consequence, an additional resistive
component emerges when the coupling impedance is evaluated. In the
latter case, the coupling impedance exhibits a frequency dependence
due to the dispersive effects associated with the induced currents
generated in the conductive media. The model developed is verified by
means of a comparison between numerical and experimental results.
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1. INTRODUCTION

The model of a system composed of several planar coils inside a
layered media is of interest for several applications, such as induction
heating systems or contactless energy transfer systems. A closed form
expression of the mutual impedance between two common axis circular
turns immersed in air based on elliptic functions was firstly provided
by Maxwell [1]. Several studies on two planar coils with parallel axes
have been carried out by various authors [2–7]. These are particularly
useful in applications concerning contactless energy transfer [8–13].

The equivalent impedance of planar coils can be modified by the
presence of additional media, for instance, self-inductance of a single
coil increases when a magnetic non-conductive layer is added [14].
Besides, where induced currents are driven in conductive media,
the equivalent coil impedance is modified by an additional resistive
contribution [15] due to power losses originated by this type of
current. This is the basis of inductive heating system [16–18]. Mutual
impedance between coils is also modified by the layered media. It
should also be noted that resistive coupling occurs in the presence
of at least one conductive layer, as is shown in studies concerning
the coupling of two circular turns located between two half-space
media [19] or the coupling between two ring-type coils above a half-
space conductive medium [20].

The basic structure modeling the system considered in the analysis
is depicted in Fig. 1. The jth coil represents the field source and the ith
coil is the coupled coil. The layered media consist of N layers. Each
kth layer is characterized by its electrical conductivity σk, magnetic
permeability µk, and thickness dk.

2. COUPLING IMPEDANCE BETWEEN COILS

In this problem, the jth coil generates a variable electromagnetic field.
Thus, an electromotive force (emf ) Vij is induced on each ith coil whose
origin is the current Ij driven by the jth coil. The coupling impedance
Zij is defined as the ratio between emf and the current which is the
source of the field, as is expressed as follows

Zij =
Vij

Ij

∣∣∣∣
Ik 6=j=0

. (1)

In order to calculate the emf Vij , it is useful to find the
electromagnetic field for a coil placed inside a layered media
characterized by their magnetic permeabilities µk and electric
conductivities σk. The jth coil consists of several circular filamentary
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Figure 1. Two circular coils placed inside a layered media.

turns which possess a common axis directed to the normal direction of
the boundaries. As a result, the equivalent impressed current density
Jj modeling the jth coil can be expressed in its coordinate system, as
can be seen as follows

Jj = Ij ·
nj∑

mj=1

δ(z − zjmj )δ(ρ− ρjmj )ϕ̂j , (2)

where ρjmj is the radii and zjmj is the axial position of each turn, and
Ij is the current driven by the jth coil.

In order to solve the system, a mixed potential point of view
is adopted. Consider an impressed current density Je and a charge
density ρe. Applying the Coulomb condition [21], the vector and
scalar potentials in the harmonic formulation, where the exponential
expression ej ωt is disregarded for the shake of simplicity, satisfy the
following equations

∇2A− jωσA + ω2µεA = −µJe, (3)

∇2Φ =
−jω

σ + jωε
ρe. (4)
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In the case considered in this paper, the field sources are closed
current loops without free charge densities. Therefore, the scalar
potential Φ vanishes, and the fields can be represented by means of
the magnetic vector potential A. From [3] it is inferred that the
fields arising from A depends on the impressed current density Je,
the divergenceless induced current density contribution −jωµσA and
the radiation term ω2µεA.

In order to obtain the electric and magnetic field for a coil placed
in a layered media some simplifications have been assumed. The effects
of radiation have been neglected due to the fact that the wavelengths
of the fields are much larger than the characteristic size of the system
at the working frequencies considered. Thus, the quasistatic approach
has been taken. To sum up, the following diffusion equation determines
the fields

∇2A− jωµσA = −µJe. (5)

2.1. Green’s Function Solution

The solution of (5) can be worked out by means of the magnetic vector
potential dyadic Green’s function G(r|r′) [22]

A(r) =
∫∫∫

G(r|r′)µJ(r′)dx′dy′dz′. (6)

where the dyadic function G(r|r′) satisfies the following expression [21]

∇2G(r|r′)− jωµσG(r|r′) = −δ(r− r′). (7)

The translational symmetry of the media with respect to
the two transversal coordinates implies that G(r|r′) = G(ρ −
ρ′; z, z′). Applying the spectral decomposition to the transversal
coordinates [23, 24], we have the equivalence

G(ρ− ρ′; z, z′) = F−1G(kρ; z, z′). (8)

where F−1 is the inverse spectral transform and kρ is the bidimensional
transformed variable of the spatial polar coordinate ρ.

Moreover, due to the multilayered geometry with parallel planar
boundaries, the dyadic Green’s function possesses a diagonal structure

G(kρ; z, z′) =

∣∣∣∣∣∣

G̃xx 0 0
0 G̃yy 0
0 0 G̃zz

∣∣∣∣∣∣
. (9)

Considering the axial symmetry, G̃xx and G̃yy have identical
expressions named G(kρ; z, z′). The third component G̃zz is not
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needed in our treatment because no field sources are directed in the
axial direction. As a result, only the transformed Green’s function
G(kρ; z, z′) is of interest for solving the system fields.

Performing the spectral decomposition in (7) for a linear,
isotropic and homogeneous medium, the transformed Green’s function
G(kρ; z, z′) obeys the following equation

∂2
zG(kρ; z, z′)− (k2

ρ + jωµσ)G(kρ; z, z′) = −δ(z − z′). (10)
The general solution of the homogenous equation, can be

expressed as

G(kρ; z, z′) = Aeη(z−z′) + Be−η(z−z′). (11)

where it is defined that η =
√

k2
ρ + jωµσ.

Introducing the solution provided in (11) into (10), and
considering a medium with air properties, the spectral representation
of the Green’s function G(kρ; z, z′) is equal to

G(kρ; z, z′) =
1

2kρ
e−kρ|z−z′|. (12)

The purpose of this work is to calculate the coupling between
the coils placed in the layer s, which has the physical properties
of vacuum. Therefore, we need to extract the fields in this layer
originated by the jth coil including the multilayered structure effects.
It should be noted that many authors give expressions for the Green’s
functions of a layered media [25–27], but these works use the complete
electromagnetic description based on the solution of wave equations
which describe systems dominated by propagation behavior. The
combination of the wave solution and the phenomena associated with
the interface between layers leads to the definition of the transmission
and reflection coefficients. However, assuming the quasistatic
approach, the electromagnetic field obeys the parabolic diffusion
equation provided in (5) with spectral eigenfunctions simultaneously
fixed in the overall space [28] which differ considerably from the wave
solution.

Assuming that in each kth layer a solution of the type expressed
in (11) is valid, the Green’s function solution is obtained by applying
the boundary conditions at the limits between contiguous layers.
Moreover, the Green’s function must be bounded, which implies the
constraints B1 = 0 and AN = 0. The continuity in the transversal
electric and magnetic field component can be expressed as

Gk(kρ; zk, z
′) = Gk+1(kρ; zk, z

′), (13)
∂zGk(kρ; zk, z

′)
µk

=
∂zGk+1(kρ; zk, z

′)
µk+1

. (14)
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Or, equivalently, by introducing (11) into the two previous
expressions and rearranging the results in a matrix notation, the
following is obtained

Mk(kρ, dk) ·
∣∣∣∣

Ak(kρ)
Bk(kρ)

∣∣∣∣ = Mk+1(kρ, 0) ·
∣∣∣∣

Ak+1(kρ)
Bk+1(kρ)

∣∣∣∣ , (15)

where dk is the thickness of the kth layer which is equal to zk − zk−1,
and the matrix Mk is defined as follows

Mk(kρ, dk) =
∣∣∣∣

eηkdk e−ηkdk

ηk
µk

eηkdk − ηk
µk

e−ηkdk

∣∣∣∣ . (16)

Rearranging (15), the relationship between the coefficients of two
contiguous layers can be expressed as follows∣∣∣∣

Ak(kρ)
Bk(kρ)

∣∣∣∣ = Rk,k+1(kρ, dk) ·
∣∣∣∣

Ak+1(kρ)
Bk+1(kρ)

∣∣∣∣ , (17)

where Rk,k+1(kρ, dk) is equal to (Mk(kρ, dk))−1 ·Mk+1(kρ, 0) or

Rk,k+1(kρ, dk) =
1
2

∣∣∣∣∣
(1 + µk

ηk

ηk+1

µk+1
)e−ηkdk (1− µk

ηk

ηk+1

µk+1
)e−ηkdk

(1− µk
ηk

ηk+1

µk+1
)eηkdk (1 + µk

ηk

ηk+1

µk+1
)eηkdk

∣∣∣∣∣ . (18)

In order to simplify the treatment, we consider that the axial
position z′, where the source field is located, divides the domain s into
two subspaces s+ and s− for positions above and below the source,
respectively. Applying (17) recursively and including the constraint
expressed as AN = 0, the coefficients in the subdomain s+ can be
written as ∣∣∣∣

A+
s (kρ)

B+
s (kρ)

∣∣∣∣ =
N−1∏

k=s

Rk,k+1(kρ, dk) ·
∣∣∣∣

0
BN (kρ)

∣∣∣∣ , (19)

where ds is equal to zero because the coefficients are evaluated in the
upper boundary at the zs position of the subdomain s+.

Note that the matrix product of Rk,k+1(kρ, dk) for k ranging from
s to N − 1 is a 2× 2 elements matrix because each Rk,k+1(kρ, dk) is a
2 × 2 square matrix, as it can be seen in (18). Therefore, the matrix
T+(kρ) is defined for mathematical purposes as follows

T+(kρ) =
∣∣∣∣

T+
11(kρ) T+

12(kρ)
T+

21(kρ) T+
22(kρ)

∣∣∣∣ =
N−1∏

k=s

Rk,k+1(kρ, dk). (20)

Considering that AN is zero, the product between the matrix
T+(kρ) and the vector of coefficients when (20) is introduced into (19)
leads to a the following expression∣∣∣∣

A+
s (kρ)

B+
s (kρ)

∣∣∣∣ =
∣∣∣∣

T+
12(kρ)

T+
22(kρ)

∣∣∣∣ ·BN (kρ). (21)
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The coefficients A+
s and B+

s are equal to the product between
the coefficient BN and a single matrix T+(kρ) element, T+

12 and T+
22,

respectively. Consequently, the latter expression can be rearranged to
obtain the following relationship between the coefficients A+

s and B+
s

A+
s (kρ) = φ+(kρ) ·B+

s (kρ), (22)

where φ+(kρ) can be written as

φ+(kρ) =
T+

12(kρ)
T+

22(kρ)
. (23)

In the same way as appear in (22) for the subdomain s−, we can
write

B−
s (kρ) = φ−(kρ) ·A−s (kρ), (24)

where φ−(kρ) is given by

φ−(kρ) =
T−21(kρ)
T−11(kρ)

, (25)

and the matrix T−(kρ) is defined as

T−(kρ) =
s−1∏

k=1

Rk+1,k(kρ, dk), (26)

where Rk+1,k(kρ, dk) is equal to Rk,k+1(kρ,−dk).
It is worth noting that, as can be seen in (22), the field contribution

associated with the coefficient A+
s (kρ), is due to the effects originated in

the layered media as a response to the excitation of the field accounted
for the coefficient B+

s (kρ).
The field component associated to B+

s (kρ) arises from the sources
located below the subdomain s+ due to the impressed current at the
position z′ and the effects of the lower layered media located under the
subdomain s−. Thus, considering (11), (12) and the field continuity
condition, we have

B+
s (kρ)e−kρ(z−zs) =

e−kρ(z−z′)

2kρ
+ B−

s (kρ)e−kρ(z−zs−1) if z ∈ s+. (27)

Similarly, the coefficient A−s (kρ) obeys

A−s (kρ)ekρ(z−zs−1) =
ekρ(z−z′)

2kρ
+ A+

s (kρ, zs)ekρ(z−zs) if z ∈ s−. (28)
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As a result, from the aforementioned results, applying (22)
and (24), and performing the appropriate operations, we obtain

G(kρ, z, z′) =
1

2kρ

[
e−kρ|∆z| +

e−kρd′u + φ−e−kρ(d′u+2d′l)

1− φ−φ+e−2kρ(d′u+d′l)
φ+e−kρdu

+
e−kρd′l + φ+e−kρ(2d′u+d′l)

1− φ−φ+e−2kρ(d′u+d′l)
φ−e−kρdl

]
if z ∈ s. (29)

where ∆z, du, dl, d′u and d′l represent the distances z − z′, zs − z,
z − zs−1, zs − z′ and z′ − zs−1, respectively. The kρ dependence of
φ−(kρ) and φ+(kρ) is implicitly assumed.

2.2. Coupling Impedance between Coils

Introducing the previous results into (6), the spectral representation of
the magnetic vector potential A(kρ, z) can be written in the following
form

A(kρ, z) =
∫ ∞

−∞
G(kρ, z, z′)µ0Je(kρ, z

′)dz′. (30)

The solution thereby depends on the physical multilayered
structure through the Green’s function G(kρ; z, z′), and the spectral
representation of the impressed current density distribution Je(kρ, z

′).
In this case the latter one corresponds to the current Jj driven by the
jth coil. The correct framework to obtain the bidimensional Fourier
Transform of the current distribution Jj provided in (2) corresponds to
the Vector Hankel Transform [29] which defines the Fourier Transform
in polar coordinates, as can be seen as follows

Jj(kρ, z
′) =

∞∑
n=−∞

e−jnkϕ

∫ ∞

0
Jn(kρρ) · Jj,n(ρ, z′)ρdρ, (31)

where Jn(kρρ) is a Bessel function dependant 2× 2 matrix

Jn(kρρ) =

∣∣∣∣∣
J ′n(kρρ) − in

kρρJn(kρρ)
in
kρρJn(kρρ) J ′n(kρρ)

∣∣∣∣∣ . (32)

Owing to the axial symmetry, the series consists of a single
transformed term n = 0 equal to the original expression. In this case,
the expression (32) is a diagonal matrix whose non-null terms are equal
to the first degree Bessel function −J1(kρjρj). Moreover, since the non-
null vectorial coefficient is directed along the azimuthal direction, the
Vector Hankel Transform (31) can be expressed as

Jj(kρ, z
′) = −

∫ ∞

0
ρJ1(kρρ)Jj(ρ, z′)dρk̂ϕ, (33)
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and introducing the spatial representation of the current distribution
Jj(r) provided in (2), this leads to

Jj(kρ, z
′) = −Ijδ(z′ − zj)

nj∑

mj=1

ρjmjJ1(kρρjmj )k̂ϕ. (34)

Considering the expression (30) for a coil with turns placed in the
same plane at zj , we have

Aj(kρ, z) = −µ0IjG(kρ, z, zj)
nj∑

mj=1

ρjmjJ1(kρρjmj )k̂ϕ. (35)

It should be noted that the Green’s function spectral represen-
tation G(kρj ; z, z′) depends only on the amplitude of the transformed
variable kρj , and, it can therefore be rewritten as G(kρj ; z, z′).

Applying the inverse Vector Hankel Transform, the spatial
formulation of the magnetic vector potential Aj(r) is defined by

Aj(r)=µ0Ij

∫ ∞

0
G(kρ, z, zj)·

nj∑

mj=1

ρjmjJ1(kρρjmj )J1(kρρ)kρdkρϕ̂. (36)

The emf Vij induced in the ith coil can be calculated by
integrating the electric field Ej(r) = −jωAj(r) arising from the jth
coil along its turn trajectories. Therefore, we have

Vij = jωµ0Ij

ni∑

mi=1

∮

Cturn imi

∫ ∞

0
G(kρ, zi, zj)

·
nj∑

mj=1

ρjmjJ1(kρρimi)J1(kρρjmj )kρdkρϕ̂j · drimi . (37)

Given that the turns of the ith coil consist of circular closed
loops with a common axis, the differential trajectory element drimi

is equivalent to ρimiϕ̂idϕi and the integral ranges from 0 to 2π. As a
result, (37) can be expressed as follows

Vij = jωµ0Ij

∫ 2π

0

∫ ∞

0
G(kρ, zi, zj)

·
ni∑

mi=1

ni∑

mj=1

ρimiρjmjJ1(kρρimi)J1(kρρjmj)(ϕ̂i ·ϕ̂j)kρdkρdϕi. (38)
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From the geometrical relationship between both coordinate
systems, it is possible to establish the following transformations

ρj =
√

ρ2
i + 2lρi cosϕi + l2, (39)

ϕ̂i · ϕ̂j =
ρi + l cosϕi√

ρ2
i + 2lρi cosϕi + l2

. (40)

Thus, Equation (38) becomes

Vij = jωµ0Ij

∫ ∞

0
G(kρ, zi, zj)

ni∑

mi=1

nj∑

mj=1

ρimiJ1(kρρimi)

·
∫ 2π

0

J1

(
kρ

√
ρ2

imi
+2lρimi cosϕi+l2

)
√

ρ2
imi

+2lρimi cosϕi+l2
(ρimi+l cosϕi)dϕikρdkρ. (41)

where the second integral term in (41) is equivalent to the following
expression

− 1
kρ

∂

∂ρimi

∫ 2π

0
J0(kρ

√
ρ2

imi
+ 2lρimi cosϕi + l2)dϕi. (42)

The integrand in (42) can be expanded by using Graf’s addition
theorem

J0(kρ

√
ρ2

imi
+ 2lρimi cosϕi + l2)

= J0 (kρρimi) J0 (kρl) +
∞∑

n=1

Jn (kρρimi) Jn (kρl) cos (nϕi) . (43)

Note that only the first term contributes to the integral because
the cosine dependent terms vanish when integration is performed in
the azimuthal variable ϕi. Consequently, (41) can be expressed as

Vij = jωµ0Ij

∫ ∞

0
G(kρ, zi, zj)

ni∑

mi=1

nj∑

mj=1

2πρimiρjmj

·J1(kρρimi)J1(kρρjmj )J0 (kρl) kρdkρ. (44)

The coupling impedance Zij is defined as the ratio between the
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induced emf Vij and the current Ij . Consequently, from (29) we have

Zij = jωµ0π

∫ ∞

0

[
e−kρ|dij | +

e−2kρduj + φ−e−2kρ(duj+dlj)

1− φ−φ+e−2kρ(duj+dlj)
φ+ekρdij

+
e−2kρdlj + φ+e−2kρ(duj+dlj)

1− φ−φ+e−2kρ(duj+dlj)
φ−e−kρdij

]

·
ni∑

mi=1

ni∑

mj=1

ρimiρjmjJ1(kρρimi)J1(kρρimj )J0 (kρl) dkρ. (45)

where dij , duj and dlj represent zi − zj , zs − zj and zj − zs−1.

3. EXPERIMENTAL RESULTS

An experimental setup based on the structure depicted in Fig. 1 has
been built to verify the models. The system impedances have been
measured by means of a precision LCR meter (Agilent E4980A). The
coils tested are two identical planar windings of 5 circular turns equally
spaced with radii between 21 and 32 mm made in a printed circuit
board (PCB). The coils can be modeled as filamentary currents because
all the turns possess a small cross-section area.

Two different configurations have been tested in order to verify the
developed coupling expressions between two coils. The first consists
of two parallel coils placed between two magnetic media, which is the
basic structure used for energy transfer purposes. Additionally, an
arrangement suitable for induction heating purposes, where the upper
media is an electric conductor material usually called the load, has
been evaluated to validate the mutual coupling expressions.

The high-precision LCR-meter does not allow simultaneous
measurements of current Ij in the jth coil and emf Vi in the ith
coil. Therefore, the process to obtain each experimental value consists
of two different measures. Moreover, the procedure to evaluate the
coupling impedance exploits the reciprocity theorem [24, 30], whose
main consequence is a symmetric impedance matrix or, equivalently,
Zij = Zji. In the first measurement, the coils are connected in an
in-phase series configuration in order to inject the same current into
both coils. The impedance Zin = Zii +Zjj +Zij +Zji was thus directly
obtained. Next, an opposite-phase series configuration was measured,
obtaining Zopp = Zii + Zjj − Zij − Zji. Finally, cross coefficients have
been quantified because Zij = Zin−Zopp

4 .
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3.1. Parallel Coils between Two Magnetic Layered
Insulators

In this configuration, the two media are made with an insulator
material, such as ferrite, characterized by a magnetic permeability
µr = 2000. Both layered media are of identical thickness t = 4.5mm.
The distance between the two media is dlu = 8.25mm. The coils are
supported in the internal sides of each ferrite layer at a distance equal
to the PCB thickness. Thus, the distance between the lower media
and the ith coil is dli = 1.75mm, the distance between the jth coil and
the upper media is duj = 1.75 mm and the distance between the axial
position of the coils is dij = 5.75mm.

It should be noted that, in a contactless energy transfer system,
the objective of the magnetic media is coupling enhancement between
coils so as to improve the system performance.

The measurements have been carried out at different distances l
between coil axes uniformly spaced from 0 to 60 mm, as shown in Fig. 2.
The mutual inductance Lij decreases when the coils are misaligned up
to a distance l where Lij becomes slightly negative, and vanishes for a
larger distance, as shown in Fig. 2.

0 10 20 30 40 50 60

0

2

4

6

8

l (mm)

L
ij

(µ
H

)

Figure 2. Coupling inductance for two coils located between two
ferrite layers. Experimental data measurements (circular symbol) and
analytical results (continuous line) are represented.

3.2. Coplanar Coils at a Distance between Axes l = 70 mm

The second configuration has been built by placing both coils over a
ferrite layer at the same distances dli and dlj of 1.75mm, the distance
l between their axes being equal to 70 mm. The upper media, called
the load, is a plate located above the lower media at a distance
dlu = 8.25mm. Three different materials have been placed in the
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Figure 3. Frequency dependence of the coupling impedance for three
different upper layers.

position of the upper media: ferromagnetic steel, copper and air.
Ferromagnetic steel is characterized by a conductivity σ = 8 · 106 S/m
and a magnetic permeability µr = 150, copper by a conductivity
σ = 5.8 · 107 S/m and a unitary relative permeability, and air by its
non-magnetic insulator properties. The two first loads correspond to
the typical composition of an induction heating load, and can therefore
be considered as the induction reference load. The last is equivalent
to a non-loaded system. The measurements have been performed for a
frequency set ranging from 10 kHz to 1MHz and the results obtained
are shown in Fig. 3.

4. CONCLUSIONS

A semi-analytical solution for coupling impedances between non-
coaxial rounded planar coils placed inside a multilayered media has
been explained in this paper.

As a result, a full description of the electric behavior of a multi-coil
system can be obtained from this solution. A simpler system consisting
of a single coil has been extensively studied in previous works, but
its electric equivalent impedance can be easily inferred from this
model considering the self-impedance as a coupling impedance between
two identical coils placed in the same position, partially proving its
validity. For a multi-coil system the remaining additional terms can
be calculated individually as single coupling terms. Therefore, it is
possible to optimize systems using this structure on the basis of the
study performed.

Finally, the analytical expressions obtained have been experimen-
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tally validated for the two basic structures considered in order to verify
the usefulness of the model in practical applications. The measurement
results are in good agreement with the analytical results.
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