Vol. 112
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-23
The Diagonal Tensor Approximation (Dta) for Objects in a Non-Canonical Inhomogeneous Background
By
Progress In Electromagnetics Research, Vol. 112, 1-21, 2011
Abstract
A non-canonical inhomogeneous background medium is one whose Green's function cannot be obtained by an analytical method. Electromagnetic scattering from objects embedded in a non-canonical inhomogeneous background medium is very challenging because of the computational complexity with the calculation of its Green's function and the multiple scattering between objects and the background. This work applies the Diagonal Tensor Approximation (DTA) to calculate the scattering from arbitrary objects in a noncanonical inhomogeneous background. Previously, the DTA has only been applied to a canonical background such as a homogeneous or layered background media. This approach employs a numerical method to obtain all Green's functions required in the calculation; an accurate DTA is used to calculate the scattering properties. In order to reduce the large number of simulations, we employ the symmetry and reciprocity in the Green's function calculation. Furthermore, considering that most realistic imaging measurements are made through a voltage probe usually represented by a wave port, we develop a method to convert the scattered field on the probe (the antenna) to the measured wave port voltage. Numerical results show that this method can obtain accurate scattering characteristics from arbitrary objects in a non-canonical inhomogeneous background medium in a microwave imaging system.
Citation
Mengqing Yuan, and Qing Huo Liu, "The Diagonal Tensor Approximation (Dta) for Objects in a Non-Canonical Inhomogeneous Background," Progress In Electromagnetics Research, Vol. 112, 1-21, 2011.
doi:10.2528/PIER10110804
References

1. Harrington, R. F., Field Computation by Moment Method, 1968.

2. Born, M. and E. Wolf, Principles of Optics, Pergamon, 1980.

3. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the born and Rytov approximations. A nonlinear approach to electromagnetic scattering," J. Geophys. Res., Vol. 98, 1759-1775, 1993.
doi:10.1029/92JB02324

4. C., Torres-Verdin and T. M. Habashy, "Rapid 2.5-D forward modeling and inversion via a new nonlinear scattering approximation," Radio Sci., Vol. 29, 1051-1079, 1994.
doi:10.1029/94RS00974

5. Zhang, M. S. and S. Fang, "Three-dimensinal quasi-linear electromagnetic inversion," Radio Sci., Vol. 31, 741-754, 1996.
doi:10.1029/96RS00719

6. Zhang, M. S. and S. Fang, "Quasi-linear approximation in 3-D electromagnetic modeling," Geophysics, Vol. 61, 646-665, 1996.
doi:10.1190/1.1443994

7. Zhang, M. S. and S. Fang, "Quasi-linear series in three-dimensinal electromagnetic modeling," Radio Sci., Vol. 32, 2167-2188, 1997.
doi:10.1029/97RS00050

8. Song, L. P. and Q. H. Liu, "Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation," Inverse Problems, Vol. 20, 171-194, 2004.
doi:10.1088/0266-5611/20/6/S11

9. Song, L.-P. and Q. H. Liu, "A new approximation to three-dimensional electromagnetic scattering," IEEE Geosci. Remote Sensing Lett., Vol. 2, No. 2, 238-242, April 2005.
doi:10.1109/LGRS.2005.846836

10. Zhang, Z. Q. and Q. H. Liu, "Two nonlinear inverse methods for electromagnetic induction measurements," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 6, 1331-1339, June 2001.
doi:10.1109/36.927456

11. Cui, T. J., W. C. Chew, A. A. Alaeddin, and Y. H. Zhang, "Fast forward solvers for the low-frequency detection of buried dielectric objects," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 2026-2036, 2003.

12. Miller, E. L. and A. S. Willsky, "Wavelet-based methods for the nonlinear inverse scattering problem using the extended born approximation," Radio Sci., Vol. 31, 51-65, 1996.
doi:10.1029/95RS03130

13. Tseng, H. W., K. H. Lee, and A. Becker, "3D interpretation of electromagnetic data using a modified extended Born approximation," Geophysics, Vol. 68, 127-137, 2003.
doi:10.1190/1.1543200

14. Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Bryan, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging I: 2-D forwardand inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, 123-133, January 2002.

15. Yu, C., M. Q. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661

16. Li, F., Li, F., Q. H. Liu, and L.-P. Song, "Three-dimensional reconstruction of objects buried in layered media using Born and distorted Born iterative methods," IEEE Geosci. Remote Sensing Lett., Vol. 1, No. 2, 107-111, 2004.
doi:10.1109/LGRS.2004.826562

17. Abubakar, A., P. M. van den Berg, and J. T. Fokkema, "Towards non-linear inversion for characterization of time-lapse phenomena through numerical modeling," Geophys. Prospect., Vol. 51, 285-293, 2003.
doi:10.1046/j.1365-2478.2003.00369.x

18. Yuan, M. Q., C. Yu., J. P. Stang, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, W. T. Joines, and Q. H. Liu, "Experiments and simulations of an antenna array for biomedical microwave imaging applications," URSI Meeting, San Diego, CA, July 2008.

19. Yu, C., M. Q. Yuan, J. P. Stang, J. E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 1, 991-1000, 2008.

20. Yu, C., M. Q. Yuan, and Q. H. Liu, "Reconstruction of 3D objects from multi-freqiency experimental data with a fast DBIM-BCG method," Inverse Problems , Vol. 25, Feb. 2009.

21. Gelius, L.-J., "Electromagnetic scattering approximations revisited," Progress In Electromagnetics Research, Vol. 76, 75-94, 2007.
doi:10.2528/PIER07062501

22. Yu, C., M. Q. Yuan, Y. Zhang, J. Stang, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Microwave imaging in layered media: 3-D image reconstruction from experimental data," IEEE Trans. Antennas Propagat., Vol. 58, No. 2, February 2010.

23. Hernondez-Lopez, M. A. and M. Quintillan-Gonzalez, "Coupling and footprint numerical features for a bow-tie antenna array," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 6, 779-794, 2005.
doi:10.1163/1569393054069037

24. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

25. Yu, J., M. Yuan, and Q. H. Liu, "A wideband half oval patch antenna for breast imaging," Progress In Electromagnetics Research, Vol. 98, 1-13, 2009.
doi:10.2528/PIER09090304

26. Gwarek, W. and M. Celuch-Marcysiak, "Wide-band S-parameter extraction form FDTD simulations for propagating and evanescent modes in inhomogenous guides," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 8, 1920-1928, August 2003.
doi:10.1109/TMTT.2003.815265

27. Chew, W. C. and Q. H. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CGFFHT," IEEE Trans. Geosci. Remote Sensing, Vol. 32, 878-884, July 1994.

28. Newman, G. A., "Cross well electromagnetic inversion using integral and differential equations," Geophysics, Vol. 60, 899-910, 1995.
doi:10.1190/1.1443825

29. Torres-Verdin, C. and T. M. Habashy, "A two-step linear inversion of two-dimensional electrical conductivity," IEEE Trans. Antennas Propagat., Vol. 43, 405-415, 1995.
doi:10.1109/8.376039

30. Van den Berg, P. M., M. van der Horst, and , "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.
doi:10.1029/95RS01764

31. Howard, Jr., A. Q., W. C. Chew, and M. C. Moldoveanu, "A new correction to the born approximation," IEEE Trans. Geosci. Remote Sensing, Vol. 28, 394-399, May 1990.
doi:10.1109/36.54365