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Abstract—A non-canonical inhomogeneous background medium is
one whose Green’s function cannot be obtained by an analytical
method. Electromagnetic scattering from objects embedded in a
non-canonical inhomogeneous background medium is very challenging
because of the computational complexity with the calculation of its
Green’s function and the multiple scattering between objects and the
background. This work applies the Diagonal Tensor Approximation
(DTA) to calculate the scattering from arbitrary objects in a non-
canonical inhomogeneous background. Previously, the DTA has only
been applied to a canonical background such as a homogeneous
or layered background media. This approach employs a numerical
method to obtain all Green’s functions required in the calculation;
an accurate DTA is used to calculate the scattering properties.
In order to reduce the large number of simulations, we employ
the symmetry and reciprocity in the Green’s function calculation.
Furthermore, considering that most realistic imaging measurements
are made through a voltage probe usually represented by a wave
port, we develop a method to convert the scattered field on the probe
(the antenna) to the measured wave port voltage. Numerical results
show that this method can obtain accurate scattering characteristics
from arbitrary objects in a non-canonical inhomogeneous background
medium in a microwave imaging system.
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1. INTRODUCTION

Over the past years, there have been growing interests in the
electromagnetic scattering problem for biomedical applications.
Various methods, such as the finite-element method (FEM), method
of moments (MOM) [1], and finite-difference time-domain (FDTD)
method have been applied as full-wave solution techniques; and the
Born approximation [2] have been proposed and implemented as an
approximate method. But these methods have their limitations,
especially for objects embedded in a complex background medium.
Although the full-wave methods can provide accurate results, they
need to solve a large system matrix (FEM and MOM) or require
large number of time steps (FDTD). It is therefore usually too
expensive for a realistic 3D biomedical imaging system. For example,
in the MOM, in order to obtain the scattered field, we need to solve
the current distribution in the computation domain, which normally
needs O(N3) CPU time (N is the number of unknowns) if a direct
matrix inversion method is used. The Born approximation is a fast
method to solve the scattering without the inversion of a system
matrix, but it is valid for weak scattering only. The accuracy of
the Born approximation decreases rapidly with the increasing target
contrast and size. Several improved Born approximation methods
have been proposed to overcome the weak scattering limitations, for
example, the extended Born approximation (EBA) [3, 4], the quasi-
linear (QL) or quasi-analytical (QA) approximation [5–7], and the
Diagonal Tensor Approximation (DTA) [8, 9]. Normally these methods
need only O(N2) CPU time to obtain the current distribution in the
computation domain; furthermore, O(N log N) algorithms have been
developed for homogeneous and layered background media [10]. The
performance of these improved approximations under higher contrasts
has been verified by [11–13, 19–22], and some of these methods have
been employed in inverse problems [14–22, 27–31]. These improved
approximations are successful methods for the forward and inverse
modeling and they have been compared in [8, 9].

Up to date, however, due to the complexity of the scattering
problem in an arbitrary inhomogeneous background, the reported
research on the improved Born approximations have so far been
applied to a canonical background medium, for example, a homogenous
medium or a layered medium background, whose Green’s function can
be obtained analytically. Meanwhile, the interferences from antennas
(probes) are usually ignored in all previous approximations. But these
presuppositions will limit the application range. In order to overcome
these limitations, in this paper, we propose a strategy to build the
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system matrix for an arbitrary non-canonical background medium with
arbitrary type of probes; here, we define a non-canonical background
as one that has an inhomogeneous background medium whose Green’s
function cannot be obtained analytically. This also allows the inclusion
of the coupling from antennas in the system. Through this method, we
can develop the improved Born approximations to a more complicated
background and thus widen the application range.

We focus our efforts on a fixed biomedical imaging system whose
sensors (antennas) is one fixed configuration, thus the system response
can be repeatedly used in the forward and inverse simulations. For such
a fixed scattering measurement system, in an approximation method,
we can assume the Green’s function for the background medium in
this system is fixed. When a target is placed into the system, the
total electric field can be solved by the DTA method with the known
background Green’s function, then the scattering from targets can be
solved by the total electric field. Basing on this assumption, we can
pre-calculate and save the system Green’s function before solving the
problem. With the fast development of numerical EM methods and
the computer technology, many EM solvers are available and can solve
the forward problem with high accuracy. In this paper, we propose a
strategy to implement the DTA method in a non-canonical background
medium: pre-calculating the Green’s function numerically. Although
this pre-calculation might be expensive, it is a one-time simulation;
thus the method is effective for a fixed measurement system such as a
microwave imager. If the scattering measurement system is fixed, the
cost on pre-calculation becomes negligible for a long term usage.

In this research, we use a commercial software Wavenology EM
to solve the Green’s function. Due to the large number of Green’s
functions needed to be solved, the method of taking advantage of the
symmetry of the measurement system and the reciprocity property
of the Green’s function to reduce the number of simulation cases is
investigated. Furthermore, considering that the realistic measurement
normally is the voltage on the probe feeding structure, we further
develop a method to convert the scattered field to measured voltage.

This paper is organized as follows: Section 2 presents a brief
description of the Green’s function calculation method, the DTA
method, the reciprocity of the Green’s function, converting the
scattered field to measured voltage, and the scheme of taking advantage
of the symmetry of the measurement system to reduce the number of
simulation cases. Section 3 presents the numerical results, including
the validation of the reciprocity of the Green’s function in a numerical
method and accuracy of scattering using the DTA method. Section 4
is the conclusion.
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2. THEORY

Figure 1 shows a general scattering measurement system in a
microwave imager with printed circuit boards and antennas mounted
on the boards. Some examples are a rectangular PCB chamber, where
probes are patch antennas fabricated on the chamber walls [23–25].
The computation domain is the center region of the chamber, and the
measurement is the S21 at the antennas. Normally, the chamber is
filled with a background material to reduce the scattering from the
target surface. Obviously, this is a measurement system with a non-
canonical inhomogeneous background medium. The electromagnetic
scattering of objects inside this chamber will be investigated by the
DTA.

2.1. The Scattering Problem

In a complicated 3-D problems shown in Fig. 1, the time-harmonic
scattered electric field (with ejωt time convention) at an observer can
be expressed by the volume equivalence principle

Esct(r)= −jωµ̃b

∫

D
G

(
r, r′

) ·J (
r′

)
dr′= k̃2

b

∫

D
G

(
r, r′

) ·χ(
r′

)
E

(
r′

)
dr′

(1)
where µ̃b is the complex permeability of the background. J = jω(ε̃ −
ε̃b)E is the induced current density in the object, ε̃ = ε0εr − jσ/ω is
the object complex permittivity (εr is the relative dielectric constant
of object, ε0 is the permittivity of free space, σ is the conductivity of
object), and ε̃b is the complex permittivity of the background. E is
the total field in the computation domain, χ(r′) is a contrast value
defined as χ(r′) = ε̃(r′)/ε̃b(r′) − 1, and G(r, r′) is a dyadic Green’s
function from a source point at r′ to the observer at r in a non-

Figure 1. A microwave imaging system with printed circuit boards
and antennas mounted on the boards.
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canonical inhomogeneous background. D is the computation domain,
and k̃2

b = ω2ε̃bµ̃b.
According to (1), to obtain the scattered field, the dyadic Green’s

function G(r, r′) and the total field in the computation domain E must
be solved first. Normally this is done with the MOM by solving the
volume integral equation in the computation domain. However, this is
an expensive method to use in terms of both memory and CPU time
requirements. In our work, we use the DTA method to calculate E, and
use a numerical method combined with reciprocity theorem to obtain
the dyadic Green’s function G(r, r′).

2.2. The Diagonal Tensor Approximation (DTA)

To reduce the computational costs from the MOM, here we apply the
Diagonal Tensor Approximation [8, 9] to solve the scattering problem
for objects in a non-canonical inhomogeneous background medium. For
this purpose, the total field E in Equation (1) inside the computation
domain can be expressed as

E(r) = Einc(r) + Esct(r) = Einc(r) + k̃2
b

∫

D
G(r, r′)·χ(r′)E(r′)dr′ (2)

where Einc(r) is the incident field, which can be obtained from a
numerical method for a non-canonical inhomogeneous background
medium.

In the DTA method, E(r′) inside the object can be approximated
by

E(r′) ≈ [I + Γ(r′)]·Einc(r′) (3)
where Γ(r′) is a diagonal scattering tensor

Γ ≈
[

γx 0 0
0 γy 0
0 0 γz

]
(4)

that is used to approximate the full scattering tensor. This
approximate tensor Γ(r′) can be calculated by [8]

[γx γy γz]T =
{

diag
[
Einc

(
r′

)]−Gb(r′)
}−1

·Eb(r′) (5)

where

diag
[
Einc

(
r′

)]
=




Einc
x (r′) 0 0

0 Einc
y (r′) 0

0 0 Einc
z (r′)


 (6)

Eb(r′) = k̃2
b

∫

D
G(r′, r′′)·χ(r′′)Einc(r′′)dr′′ (7)
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Gb(r′) =

[
gxx(r′) gxy(r′) gxz(r′)
gyx(r′) gyy(r′) gyz(r′)
gzx(r′) gzy(r′) gzz(r′)

]
(8)

In the above,

gij (r′) = k̃2
b

∫

D
Gij

(
r′, r′′

) ·χ (
r′′

)
Einc

j (r′′)dr′′ (9)

where i, j = x, y, z, Gij(r′, r′′) is the ijth component of the dyadic
Green’s function for an ideal electric dipole source in a non-canonical
inhomogeneous background. Similar to the incident field, this dyadic
Green’s function normally has to be obtained numerically due to the
presence of a non-canonical inhomogeneous background.

After the total field inside the object is approximated by the DTA,
a numerical integration of the dyadic Green’s function operating on
the induced electric current density can be performed to arrive at the
electric field at an observer. For simplicity, we will discretize (2) to
obtain the electric field as

E(ri) = Einc(ri) + k̃2
b

N∑

j=1

G(ri, rj)·χ(rj)E(rj)∆Vj (10)

where rj is the jth cell center position, G(ri, rj) is the dyadic Green’s
function from a current at jth cell to the observer at ith cell, and ∆Vj

is the volume of the j-th cell.
Normally, it is impossible to obtain G(ri, rj) analytically for a non-

canonical inhomogeneous background. Considering current numerical
EM solvers can provide accurate results, in this work, we use a
numerical method combined with the reciprocity theorem to solve for
the dyadic Green’s function.

2.3. Reciprocity for the Green’s Function

In order to calculate scattered field Esct(r), we need to know the dyadic
Green’s function G(r, r′) to solve (2). Because of the presence of an
inhomogeneous background medium, this dyadic Green’s function will
be obtain numerically.

If the fields produced by electric current sources Ji(r) and Jj(r)
are denoted by Ei(r) and Ej(r) respectively, then according to the
reciprocity theorem, we have∫

D
Ji(r) ·Ej(r)dr =

∫

D
Jj(r) ·Ei(r)dr (11)
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Choosing these sources as point dipoles Ji = âiδ(r − ri), and Jj =
âjδ(r− rj) where âi and âj are the dipole directions, we obtain

∫

D
[âiδ(r− ri)] ·Ej(r)dr =

∫

D
[âjδ(r− rj)] ·Ei(r)dr (12)

or
âi ·G(ri, rj) · âj = âj ·G(rj , ri) · âi (13)

Therefore,
G(ri, rj) = [G(rj , ri)]T (14)

according to the reciprocity theorem for an arbitrary inhomogeneous
background medium.

2.4. Use of Symmetry to Reduce the Number of Simulations

To approximate the total electric field inside the object in DTA by
Equation (10), the dyadic Green’s function is needed for sources
located at every cell. This precalculation can be time consuming.
However, symmetry of the problem geometry can be explored to reduce
the number of numerical simulations needed for this dyadic Green’s
function.

Theoretically, in order to solve (10), we need to run N simulations
(N is the total number of cells) to obtain the Green’s functions from N
sources to N receivers. For each simulation, there is an ideal electric
dipole source at the ith cell center and N point probes at all cell centers.
But if the measurement system is symmetric as in typical microwave
imaging systems (such as that in [25]), for example, as the rectangular
chamber used in Fig. 5, which is symmetric along x = y, x = 0, y = 0
planes respectively, we only need to simulate about N/8 cases, then
use the symmetry to obtain N2 Green’s functions.

Here, we use a 2D case to show our scheme of using the symmetry
and reciprocity together. As shown in Fig. 2, there are 16 cells in the
object domain, and the system is symmetric along the x = y, x = 0
and y = 0 planes respectively. In the first step, we need to place
an point dipole source at cells 11, 12 and 16, respectively to get the
Green’s function from source cells 11, 12 and 16 to all cells. Because
the system is symmetric along x = y plane, we can obtain the Green’s
function from cell 15 to all cells by mirroring the results for source
at cell 12 about the x = y plane. Then, we can obtain the Green’s
function from source cells 9, 10, 13 and 14 by mirroring the results for
source cells 11, 12, 15 and 16 about the x = 0 plane. Finally, in the
same way we obtain the Green’s function for source cells 1–8. Through
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(a) (b)

(c) (d)

Figure 2. (a) Simulate the cases with source at cell 11, 12, 16,
respectively. (b) Obtain the Green’s function for source at cell 15
by mirroring along x = y palne. (c) Obtain the Green’s function for
source at cell 9, 10, 13 and 14 by mirroring along x = 0 plane. (d)
Obtain the Green’s function for source at cell 1–8 by mirroring along
y = 0 plane.

this scheme, we need only 3 simulations, instead of 16 simulations, to
obtain the 16× 16 Green’s functions. Similarly, for a 3D system with
2D symmetry with respect to x = y, x = 0 and y = 0 planes, the total
simulation requirement will be significantly reduced by a factor about
8 (through above steps, y = 0 symmetry can reduce the number of
simulation cases by half; x = 0 symmetry can further half the number
of simulation cases; finally, x = y symmetry can reduce the number of
simulation cases by about half; therefore, the factor is approximately
2× 2× 2 = 8).

2.5. The Green’s Function from Object Domain to a
Receiver

Once the electric field has been found by the DTA inside the object
domain discretized by N cells, the electric field at a receiver at r can
be found from (1). To do this, we need to know Green’s function
G(r, r′) for sources at the N cells inside the object domain to the
receiver. This requires N numerical simulations. But according to
the reciprocity theorem in Equation (14), if we can obtain this by the
transpose of G(r′, r), i.e., the Green’s function from a source at the
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receiver location to all cells in the object domain. Thus, the total
simulation requirement will be significantly reduced by a factor of N
for one receiver outside the object. If there are NR receivers, the saving
factor will be N/NR.

2.6. The Wave Port Green’s Function Gu

In a realistic system, the receiving probes are usually not ideal point
electric dipoles as described in the last subsection, but wave ports
to characterize the antenna feeding ports. The measured data are
usually the wave port voltage values (or the S parameters if voltages
are normalized) at these antenna feeding ports. Here, we derive the
relationship between the wave port voltage and the scattered field from
the object on the wave port.

Assume that an antenna is fed by a wave port with a port area
S, and and the object is located at r ∈ D outside the antenna. We
setup two cases: In case 1, we have an induced electric current density
J inside a volume D in the inhomogeneous background medium, and
the scattered voltage response V on wave port is calculated through
Esct and Hsct radiated by this induced source; in case 2, we excite
the antenna with a waveport and obtain the electric field response at
r ∈ D. We will derive the reciprocity relation for the voltage and
electric and magnetic fields.

We define the electric and magnetic fields for the guided mode in
the wave port as em and hm. Here we assumed that em and hm have
been already normalized. Then in case 1 where an induced electric
current density J(r) for r ∈ D, according to [26], the voltage on a
wave port as a receiver can be obtained by∫

S

{
Esct(r)× [−hm(r)]

} · n̂ds = V, (15)

where Esct is the scattered electric field response on the wave port
due to the induced electric current source in D, and n̂ is the outward
normal of the wave port surface. Equation (15) can be rewritten as

V =
∫

S
[−hm(r)× n̂]·Esct(r)ds=

∫

D

∫

S
ds[n̂× hm(r)]·G(r, r′)·J(r′)dr′

=
∫

D
Gu(r, r′) · J(r′)dr′ (16)

where the vector Green’s function

Gu(r, r′) =
∫

S
[n̂× hm(r)] ·G (

r, r′
)
ds (17)

can be obtained by a numerical method.
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2.7. Reciprocity for the Wave Port Green’s Function

Now, we are ready to discuss the two cases and their reciprocity
relationship: In case 1, we have an induced electric current density
J1 inside a volume D in the inhomogeneous background medium, and
the scattered voltage response V on wave port is calculated through
Esct and Hsct radiated by this induced source; in case 2, we excite the
antenna with a wave port mode and obtain the electromagnetic field
response E2 and H2 at r ∈ D. We will derive the reciprocity relation
for the voltage and electric and magnetic fields.

In case 1, the induced electric current source J1(r) for r ∈ D
produces electric field E1 and magnetic field H1 in wave port S.

In case 2, for a wave port source at feeding position S, the
equivalent currents corresponding to the m-th mode of as the incident
field in the port can be expressed as

J2(r) = −n̂× hm(r); M2(r) = n̂× em(r), r ∈ S (18)
where hm(r) and em(r) are the incident electric and magnetic fields in
the wave port for an inward propagating mode respectively. This wave
port excitation produces an electric field E2 at r ∈ D, which is outside
the wave port surface S.

According to the reciprocity theorem, we have∫

S
[J2(r) ·E1(r)−M2(r) ·H1(r)]ds =

∫

D
J1(r) ·E2(r)dr (19)

and∫

S
[−n̂×hm(r) ·E1(r)− n̂×em(r) ·H1(r)] ds=

∫

D

J1(r)·E2(r)dr (20)

As the normalized voltage and current on a wave port can be
defined as [26]

V =
∫

S
{E1(r)× [−htm(r)]}· n̂ds; I =

∫

S
[etm(r)×H1(r)] · n̂ds, (21)

where etm and htm are the transverse field distributions of the m-th
waveguide mode propagating into the wave port, Equation (19) can be
rewritten as

V + I =
∫

D
J1(r) ·E2(r)dr (22)

In the special case, where the current density J1 is a point dipole, i.e.,
J1 = âδ(r− r1), we have

V + I = â ·E2(r1) (23)
Therefore, the electric response of a wave port source is equal to the
summation of the normalized voltage and current responses on the port
due to an electric dipole source.
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3. NUMERICAL RESULTS

3.1. Verification of the Reciprocity of an Ideal Electric
Dipole Source to a Point Probe

In order to verify the reciprocity theorem in an actual numerical
simulation, we set up two simulations, as shown in Fig. 3(a). For
setup 1, we place an x̂ polarized electric dipole at position r1 =
(0, 0, 1) cm and a point probe at r2 = (2.5, 3.0, 7.5) cm. For setup 2, we
put an ẑ polarized electric dipole at position r2 and a point probe at r1.
The background is a homogenous material with relative permittivity of
5 and conductivity of 0.01 S/m; the inner (blue) cuboid is a rectangular
object with size of 3×4×5 cm3 with the relative permittivity 10 and the
conductivity 0.1 S/m. Fig. 3(b) shows that the Ez response of setup 1
is the same as the Ex response of setup 2. Through these simulations,
the reciprocity of the ideal electric dipole source to a point probe is
verified in simulation.

(a) (b)

Figure 3. Verification of the reciprocity of an ideal electric dipole
source to a point probe in an inhomogeneous medium with a dielectric
cube of dimensions 3 × 4 × 5 cm3 centered at (1.0, 1.3, 3.2)m, εr = 10
and σ = 0.1 S/m in a homogeneous background with εrb = 5 and
σb = 0.01 S/m. (a) Simulation setup with a x-oriented electric dipole
at r1 = (0, 0, 1) cm and a point probe at r2 = (2.5, 3.0, 7.5) cm.
(b) Transient Ez response of setup 1 versus transient Ex response of
setup 2.
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3.2. Verification of the Reciprocity of an Ideal Electric
Dipole Source to a Wave Port

Next, we verify the reciprocity between an ideal electric dipole source
and a wave port in a Planar Inverted F Antenna (PIFA) placed in
medium with εrb = 5 and σb = 0.01 S/m. The antenna wave port is
extended to air. The configuration is shown in Fig. 4(a), while the
PIFA antenna geometry is give in Fig. 4(b). We set up two cases to
verify that the voltage response on a wave port is reciprocal to the
electric field response at a point probe in simulation. For setup 1, we
place an x̂ polarized electric dipole at position r1 = (0.5, 0.7, 1.0) cm
and a receiving mode wave port (the red rectangle) on the antenna
feeding coax. For setup 2, we put a point probe at r1, and change the
wave port as source with the TEM mode in the coax. Except for the
wave port of a coaxial cable, the background is a homogenous material
with relative permittivity of 5 and conductivity of 0.01 S/m. Fig. 4(c)
shows the voltage response on the wave port for setup 1 and the Ex

response of setup 2. These two curves agree very well. Through these
simulations, we know the voltage response on a wave port is reciprocal
to the electric field response at a point probe in numerical simulation.

0 1 2 3 4 5 6 7

-20

-10

0

10

20

Time (ns)

W
a
v
e
fo

rm

Ex on observer

Scat. volt. on Wave Port

(a) (b) (c)

Figure 4. Verification of the reciprocity of an ideal electric dipole
source to a wave port in a PIFA antenna placed in a medium with
εrb = 5 and σb = 0.01 S/m. (a) Simulation setup. (b) Antenna
geometry. (c) Transient Ex response of setup 1 versus transient wave
port voltage response of setup 2.
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3.3. Verification of the Wave Port Green’s Function Gu

Here, we setup an imaging chamber to test the accuracy of the
Green’s function for a wave port scattered voltage in a non-canonical
inhomogeneous background medium. The chamber is sealed by five
grounded PCB panels, and only open at the +y direction. There are
8 PIFA fabricated on each side panel, thus totally 32 antennas in the
chamber, as shown in Fig. 5(a). Each antenna is fed by a coax as
shown in Fig. 4; there is a wave port on the cross-section of each coax.
The chamber size is 10× 10 × 10 cm3, filled with a fluid with relative
permittivity of 7.5 and conductivity of 0.01 S/m. A cuboid (size is
4 × 1.6 × 2 cm3) with relative permittivity of 13 and conductivity of
0.1 S/m is placed close to the bottom of the chamber, as shown in
Fig. 5(b). The cuboid is meshed by 20×8×10 cells in forward scattering
calculation in Equation (16). In the simulation, there is a point probe
at each cell center to record the electric field.

Firstly, we remove the cuboid from the chamber. We record the
electric field at each cell center as Einc. According to the reciprocity
theorem, this field is also the vector Green’s function Gu(r2, r1) from
cell center to the wave port. Then we put the cuboid into the chamber
and record the electric field at each cell center as the total field E.
Because we know the contrast of the cuboid, we can obtain the induced
current at each cell center by J = jωεbχE, then the scattered voltage
at each wave port can be obtained by (16).

(a) (b) (c)

Figure 5. Verification of the vector wave port Green’s function
Gu(r2, r1) for a realistic microwave imaging chamber with 32 PIFA
antennas. (a) Simulation setup of the chamber, with each of the four
side panels having 8 PIFA antennas given in Fig. 4. The bottom face
is PEC, and the top face is open to air. (b) A cuboid in the chamber
(size view). (c) A cuboid in the chamber (front view).
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Figure 6. Comparison of scattered voltage at wave ports calculated
by the vector wave port Green’s function and by the FDTD method
with Wavenology EM for the problem in Fig. 5. (a) Wave ports 17 is
used as a source port to calculate the scattered wave port voltage. (b)
|U sct| on port 17. (c) |U sct| on port 13.

We calculate the scattered wave port voltage by operating the
vector wave port Green’s function on the induced current density given
calculated by the FDTD method through Wavenology EM. We then
compare this voltage with the FDTD calculation by Wavenology EM.
Fig. 6 shows the comparison of the simulated scattered voltage and
the reference result by Wavenology EM at each wave port in frequency
domain. The result from (16) matches the reference result very well.
The small mismatch at the high frequency part is due to the lower
meshing density of (10) for (16) in high frequency range (10 sampling
points per wavelength at 2.75 GHz). From this test, we know that
(16) works well in this complicated antenna array. This verifies the
vector wave port Green’s function in this realistic microwave imaging
chamber.

3.4. The Scattered Field by DTA in a System with Five
PEC Panels

The above examples verify the reciprocity and Green’s functions for
inhomogeneous media. Next, we set up a non-canonical inhomogeneous
background case to test the accuracy of scattered field calculated by the
proposed DTA method combined with the numerical Green’s functions.
This case is designed to test a measurement system which employs
impedance-matched point dipole probes to measure the field directly.
As shown in Fig. 7(a), the background medium contains five PEC
panels and two cuboids. The distance between facing PEC panels is
10 cm. The size of each cuboid is 8×8×4 cm3. The electric properties
of all materials are shown in Fig. 7(b). There are 44 probes in the
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simulation, as shown in Fig. 7(c), distributed along 4 straight lines,
each line having 11 probes. The distance between two adjacent probes
along the same line is 8mm.

The target is a sphere placed at the center of the system (the red
sphere shown in Fig. 7(c)), which has a radius of 10 mm, and with
εr = 4 and σ = 0.1 S/m. Fig. 8 shows the scattered electric field at
the probes at 2.75 GHz. It shows the scattered field through the DTA
method is much better than the Born approximation, even for a sphere
with size of 0.34λbkg with contrast χ = 1; the scattered field calculated
by the DTA method has 10% relative RMS error compared with the
reference full-wave results.

(a) (b) (c)

Figure 7. The scattered field by DTA in a system with five PEC
panels. (a) Angle view of the simulation setup, where the red dot is
the ideal electric dipole source. (b) Cross-section of the case, where for
εr = 2 and σ = 0.001 S/m for the homogenous material except for the
PEC and cuboids; for the top cuboid, εr = 3 and σ = 0.15 S/m; for
bottom cuboid, εr = 1 and σ = 0.0001 S/m. (c) The point probes in
the simulation (dark dots), the red sphere (r = 10 mm) is the target.
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Figure 8. Comparison of the scattered electric field for the system in
Fig. 7 calculated by DTA, Born approximation, and Wavenology EM
for (a) |Esct

x |, (b) |Esct
y |, and (c) |Esct

z |.
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3.5. The Scattered Voltage from Two Cubes by DTA in a
Chamber

In this example, we study a microwave imaging chamber to test the
accuracy of the scattered voltage at wave ports by the DTA method
combined with the numerical Green’s function. The chamber is sealed
by 5 PCB panels, only open at the +z direction. Similar to the case
in Fig. 6, with 8 PIFA antennas fabricated on each side panel, thus
totally 32 antennas. Each antenna is fed by a wave port on the cross-
section of the coax. The chamber size is 10× 10 × 10 cm3, filled with
a fluid having relative permittivity of 5 and conductivity of 0.01 S/m.
Two cuboids of dimensions 4 × 4 × 4 cm3 are placed in the chamber,
as shown in Fig. 9. The top cuboid has relative permittivity of 8 and
conductivity of 0.2 S/m. The bottom cuboid has relative permittivity
of 6 and conductivity of 0.02 S/m. The forward computation domain
is the bounding box of the two cuboids, meshed by 12× 12× 12 cells.

Figure 10 shows the scattered voltage on 32 probes at frequency
2.75GHz when the source port is port 17. The scattered voltage results
calculated by the DTA method agree well with the reference full-wave
results, with 15% relative RMS error.

3.6. The Scattered Voltage from Eight Small Cubes by DTA
in a Chamber

Finally, we examine the DTA accuracy for the scattering from multiple
small objects. In this case, 8 cubes (each with dimensions 12 × 12 ×
12mm3) are placed in two layers in the computation domain. The

(a) (b) (c)

Figure 9. Two cubes in an imaging chamber. (a) Angle view of
the configuration. (b) Top view of the configuration, with the dashed
line indicating the forward simulation domain. (c) Side view of the
configuration.
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Figure 10. The calculated scattered voltage from the two cubes in
a microwave imaging chamber in Fig. 9. Comparison of (a) the real
part, and (b) imaginary part of the scattered voltage with the reference
full-wave results obtained by Wavenology EM.

(a) (b) (c)

Figure 11. Scattered voltages from eight small cubes in the microwave
imaging chamber. (a) Angle view of the simulation setup. (b) Top
view of the configuration with the red dashed line indicating the
computational domain. (b) The side view of the configuration.

positions of these 8 cubes are shown in Fig. 11, with the distance
between any adjacent cells being λ/4 in the background fluid at
2.7GHz; and the size of cube is λ/4 also. All cubes have the
same electric properties of a relative permittivity 10 and conductivity
0.2 S/m.

Figure 12 shows the scattered voltage at the 32 wave ports at
frequency 2.75 GHz (source port is port 17). The scattered voltage
through the DTA method has 18% relative RMS error compared with
the reference full-wave results.
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Figure 12. Comparison of the DTA calculated scattered voltage with
Wavenology EM for the (a) real part and (b) imaginary part of the
scattered voltage at the 32 ports.

From the last two cases, it is shown that our proposed method
works well in a complicated non-canonical inhomogeneous background.
The DTA method combined with the electric field-voltage conversion
can provide acceptable scattering field results for such complicated
configurations. Therefore, we expect that this approximate DTA solver
will be useful for both the forward and inverse scattering computation
in microwave imaging.

4. CONCLUSION

We demonstrate the first application of the Diagonal Tensor
Approximation to calculate the scattered fields from arbitrary objects
in a non-canonical inhomogeneous background. This extends the
application domain of the DTA from previous cannonical background
media (such as homogeneous and layered-medium background) to
arbitrary inhomogeneous background media. The method relies on the
numerical computation of the Green’s functions. We take advantage
of the symmetry of the configuration and the reciprocal property of
the Green’s function to reduce the number of the simulation cases.
Furthermore, we develop the necessary formulation to relate the wave
port voltage at an antenna to the fields in the computation domain.
Extensive numerical results show that this method can accurately
obtain the scattered fields from arbitrary objects in a non-canonical
inhomogeneous background. Future work will apply this method to
perform inverse scattering computation for microwave imaging.



Progress In Electromagnetics Research, Vol. 112, 2011 19

REFERENCES

1. Harrington, R. F., Field Computation by Moment Method,
R. E. Krieger, Editor, Malabar, FL, 1968.

2. Born, M. and E. Wolf, Principles of Optics, Pergamon, New York,
1980.

3. Habashy, T. M., R. W. Groom, and B. R. Spies, “Beyond
the born and Rytov approximations. A nonlinear approach to
electromagnetic scattering,” J. Geophys. Res., Vol. 98, 1759–1775,
1993.

4. Torres-Verdin, C. and T. M. Habashy, “Rapid 2.5-D forward mod-
eling and inversion via a new nonlinear scattering approximation,”
Radio Sci., Vol. 29, 1051–1079, 1994.

5. Zhang, M. S. and S. Fang, “Three-dimensinal quasi-linear
electromagnetic inversion,” Radio Sci., Vol. 31, 741–754, 1996.

6. Zhang, M. S. and S. Fang, “Quasi-linear approximation in 3-D
electromagnetic modeling,” Geophysics, Vol. 61, 646–665, 1996.

7. Zhang, M. S. and S. Fang, “Quasi-linear series in three-dimensinal
electromagnetic modeling,” Radio Sci., Vol. 32, 2167–2188, 1997.

8. Song, L. P. and Q. H. Liu, “Fast three-dimensional electromag-
netic nonlinear inversion in layered media with a novel scattering
approximation,” Inverse Problems, Vol. 20, 171–194, 2004.

9. Song, L.-P. and Q. H. Liu, “A new approximation to three-
dimensional electromagnetic scattering,” IEEE Geosci. Remote
Sensing Lett., Vol. 2, No. 2, 238–242, April 2005.

10. Zhang, Z. Q. and Q. H. Liu, “Two nonlinear inverse methods for
electromagnetic induction measurements,” IEEE Trans. Geosci.
Remote Sensing, Vol. 39, No. 6, 1331–1339, June 2001.

11. Cui, T. J., W. C. Chew, A. A. Alaeddin, and Y. H. Zhang, “Fast-
forward solvers for the low-frequency detection of buried dielectric
objects,” IEEE Trans. Geosci. Remote Sensing, Vol. 41, 2026–
2036, 2003.

12. Miller, E. L. and A. S. Willsky, “Wavelet-based methods for
the nonlinear inverse scattering problem using the extended born
approximation,” Radio Sci., Vol. 31, 51–65, 1996.

13. Tseng, H. W., K. H. Lee, and A. Becker, “3D interpretation
of electromagnetic data using a modified extended Born
approximation,” Geophysics, Vol. 68, 127–137, 2003.

14. Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Bryan, G. A. Ybarra,
L. W. Nolte, and W. T. Joines, “Active microwave imaging I: 2-D
forwardand inverse scattering methods,” IEEE Trans. Microwave



20 Yuan and Liu

Theory Tech., Vol. 50, 123–133, January 2002.
15. Yu, C., M. Q. Yuan, J. Stang, E. Bresslour, R. T. George,

G. A. Ybarra, W. T. Joines, and Q. H. Liu, “Active microwave
imaging II: 3-D system prototype and image reconstruction
from experimental data,” IEEE Trans. Microwave Theory Tech.,
Vol. 56, No. 4, 991–1000, 2008.

16. Li, F., Q. H. Liu, and L.-P. Song, “Three-dimensional
reconstruction of objects buried in layered media using Born and
distorted Born iterative methods,” IEEE Geosci. Remote Sensing
Lett., Vol. 1, No. 2, 107–111, 2004.

17. Abubakar, A., P. M. van den Berg, and J. T. Fokkema, “Towards
non-linear inversion for characterization of time-lapse phenomena
through numerical modeling,” Geophys. Prospect., Vol. 51, 285–
293, 2003.

18. Yuan, M. Q., C. Yu., J. P. Stang, R. T. George, G. A. Ybarra,
W. T. Joines, and Q. H. Liu, “Experiments and simulations of an
antenna array for biomedical microwave imaging applications,”
URSI Meeting , San Diego, CA, July 2008.

19. Yu, C., M. Q. Yuan, J. P. Stang, J. E. Bresslour, R. T. George,
G. A. Ybarra, W. T. Joines, and Q. H. Liu, “Active microwave
imaging II: 3-D system prototype and image reconstruction
from experimental data,” IEEE Trans. Microwave Theory Tech.,
Vol. 56, No. 4, 991–1000, 2008.

20. Yu, C., M. Q. Yuan, and Q. H. Liu, “Reconstruction of 3D objects
from multi-freqiency experimental data with a fast DBIM-BCGS
method,” Inverse Problems, Vol. 25, Feb. 2009.

21. Gelius, L.-J., “Electromagnetic scattering approximations revis-
ited,” Progress In Electromagnetics Research, Vol. 76, 75–94, 2007.

22. Yu, C., M. Q. Yuan, Y. Zhang, J. Stang, R. T. George,
G. A. Ybarra, W. T. Joines, and Q. H. Liu, “Microwave imaging in
layered media: 3-D image reconstruction from experimental data,”
IEEE Trans. Antennas Propagat., Vol. 58, No. 2, February 2010.

23. Hernondez-Lopez, M. A. and M. Quintillan-Gonzalez, “Coupling
and footprint numerical features for a bow-tie antenna array,”
Journal of Electromagnetic Waves and Applications, Vol. 19,
No. 6, 779–794, 2005.

24. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, “Microwave
imaging via adaptive beamforming methods for breast cancer
detection,” Journal of Electromagnetic Waves and Applications,
Vol. 20, No. 1, 53–63, 2006.

25. Yu, J., M. Yuan, and Q. H. Liu, “A wideband half oval



Progress In Electromagnetics Research, Vol. 112, 2011 21

patch antenna for breast imaging,” Progress In Electromagnetics
Research, Vol. 98, 1–13, 2009.

26. Gwarek, W. and M. Celuch-Marcysiak, “Wide-band S-parameter
extraction form FDTD simulations for propagating and evanescent
modes in inhomogenous guides,” IEEE Trans. Microwave Theory
Tech., Vol. 51, No. 8, 1920–1928, August 2003.

27. Chew, W. C. and Q. H. Liu, “Inversion of induction tool
measurements using the distorted Born iterative method and CG-
FFHT,” IEEE Trans. Geosci. Remote Sensing, Vol. 32, 878–884,
July 1994.

28. Newman, G. A., “Cross well electromagnetic inversion using
integral and differential equations,” Geophysics, Vol. 60, 899–910,
1995.

29. Torres-Verdin, C. and T. M. Habashy, “A two-step linear
inversion of two-dimensional electrical conductivity,” IEEE Trans.
Antennas Propagat., Vol. 43, 405–415, 1995.

30. Van den Berg, P. M. and M. van der Horst, “Nonlinear inversion
in induction logging using the modified gradient method,” Radio
Sci., Vol. 30, 1355–1369, 1995.

31. Howard, Jr., A. Q., W. C. Chew, and M. C. Moldoveanu, “A
new correction to the born approximation,” IEEE Trans. Geosci.
Remote Sensing, Vol. 28, 394–399, May 1990.


