Vol. 27
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-12-23
Acceleration of Vortex Methods Calculation Using Fmm and Mdgrape-3
By
Progress In Electromagnetics Research B, Vol. 27, 327-348, 2011
Abstract
The present study discusses some numerical techniques on the simultaneous use of the Fast Multipole Method (FMM) and specialpurpose computer (MDGRAPE-3) to make the impractically expensive calculation feasible without the loss of numerical accuracy. In the present calculations, the impingement of two identical inclined vortex rings has been studied, and the computation time has been reduced by a factor of 1000 at N=1.18 × 106 where N is the number of vortex elements. The direct and MDGRAPE-3 calculations both have a scaling of O(N2), and the use of the FMM brings them both down to O(N). The global kinetic energy, enstrophy and energy spectra have been investigated to address the numerical accuracy and have good agreement with other similar works.
Citation
Tarun Kumar Sheel, "Acceleration of Vortex Methods Calculation Using Fmm and Mdgrape-3," Progress In Electromagnetics Research B, Vol. 27, 327-348, 2011.
doi:10.2528/PIERB10091804
References

1. Leonard, A., "Vortex methods for flow simulations," J. Comput. Phys., Vol. 37, 289-335, 1980.
doi:10.1016/0021-9991(80)90040-6

2. Barnes, J. E. and P. Hut, "A hierarchical O(N logN) force calculation algorithm," Nature, Vol. 324, 446-449, 1986.
doi:10.1038/324446a0

3. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., Vol. 73, 325-348, 1987.
doi:10.1016/0021-9991(87)90140-9

4. Narumi, T., Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futatsugi, R. Yanai, R. Himeno, S. Fujikawa, M. Ikei, and M. Taiji, "A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion sup35 with the specialpurpose computer system MDGRAPE-3," Proceedings of the SC06 (High Performance Computing, Networking, Storage and Analysis), CDROM, Tampa, USA, 2006.

5. Sugimoto, D., Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, and M. Umemura, "A special-purpose computer for gravitational many-body problems," Nature, Vol. 345, 33-35, 1990.
doi:10.1038/345033a0

6. Sheel, T. K., K. Yasuoka, and S. Obi, "Fast vortex method calculation using a special-purpose computer," Computers and Fluids, Vol. 36, 1319-26, 2007.
doi:10.1016/j.compfluid.2007.01.006

7. Makino, J., "Treecode with a special-purpose processor," Pub. of the Astronomical Society of Japan, Vol. 43, 621-638, 1991.

8. Chau, N. H., A. Kawai, and T. Ebisuzaki, "Implementation of fast multipole algorithm on special-purpose computer MDGRAPE-2," Proc. of the 6th World Multiconference on Systematics, Cybernetics and Informatics SCI 2002', Vol. XVI(2002), 477-481, USA, 2002.

9. Shankar, S., "A new mesh-free vortex method,", Ph.D. Thesis, The Florida State University, 1996.

10. Chatelain, P., "Contributions to the three-dimensional vortex element method and spinning bluff body flows,", Ph.D. Thesis, California Institute of Technology, 2005.

11. Winckelmans, G. S. and A. Leonard, "Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows," J. Comput. Phys., Vol. 109, 247-273, 1993.
doi:10.1006/jcph.1993.1216

12. Sheel, T. K., R. Yokota, K. Yasuoka, and S. Obi, "The study of colliding vortex rings using a special-purpose computer and FMM," Transactions of the Japan Society for Computational Engineering and Science, Vol. 2008, 20080003, 2008.

13. Greengard, L. and V. Rokhlin, Rapid Evaluation of Potential Fields in Three Dimensions, in Vortex Methods, Edited by C. Anderson and C. Greengard, Number 1360 in Lecture Notes in Mathematics, 121-141, Springer-Verlag, Berlin, 1988.

14. Sanjay, V. and W. C. Chew, "Analysis and performance of a distributed memory multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 53, 2719-2727, 2005.
doi:10.1109/TAP.2005.851859

15. Chew, W. C., J. M. Jin, and M. Eric, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House Publishers, 2001.

16. Cheng, H., L. Greengard, and V. Rokhlin, "A fast adaptive multipole algorithm in three dimensions," J. Comp. Phys, Vol. 155, 468-498, 1999.
doi:10.1006/jcph.1999.6355

17. Gumerov, N. A. and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, 2004.

18. Xu, K., D. Z. Ding, Z. H. Fan, and R. S. Chen, "Multilevel fast multipole algorithm enhanced by GPU parallel technique for electromagnetic scattering problems," Microwave and Optical Technology Letters, Vol. 53, 502-507, 2010.
doi:10.1002/mop.24963

19. Ravnik, J., S. Leopold, and Z. Zoran, "Fast single domainsubdomain BEM algorithm for 3D incompressible fluid flow and heat transfer," IJNME, Vol. 77, 1627-1645, 2009.
doi:10.1002/nme.2467

20. Rui, P.-L., R.-S. Chen, Z.-W. Liu, and Y.-N. Gan, "Schwarz-Krylov subspace method for MLFMM analysis of electromagnetic wave scattering problems," Progress In Electromagnetics Research, Vol. 82, 51-63, 2008.
doi:10.2528/PIER08013003

21. Taiji, M., T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and A. Konagaya, "Protein explorer: A petaflops special-purpose computer system for molecular dynamics simulations," Proc. Supercomputing, in CD-ROM, USA, 2003.

22. Anderson, C. R., "An implementation of the fast multipole method without multipoles," SIAM J. Sci. Stat. Comput., Vol. 13, 923-947, 1992.
doi:10.1137/0913055

23. Makino, J., "Yet another fast multipole method without multipoles-pseudo-particle multipole method," J. Comput. Phys., Vol. 151, 910-920, 1999.
doi:10.1006/jcph.1999.6226

24. Totsuka, Y. and S. Obi, "A validation of viscous dissipation models for fast vortex methods in simulations of decaying turbulence," Journal of Fluid Science and Technology, Vol. 2, No. 1, 248-257, 2007.
doi:10.1299/jfst.2.248

25. Cottet, G.-H., B. Michaux, S. Ossia, and G. VanderLinden, "A comparison of spectral and vortex methods in three-dimensional incompressible flows," J. Comp. Phys., Vol. 175, 702-712, 2002.
doi:10.1006/jcph.2001.6963

26. Fukuda, K. and K. Kamemoto, "Application of a redistribution model incorporated in a vortex method to turbulent flow analysis," The 3rd International Conference on Vortex Flows and Vortex Methods, 131-136, Japan, 2005.