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Abstract—The present study discusses some numerical techniques
on the simultaneous use of the Fast Multipole Method (FMM) and
special-purpose computer (MDGRAPE-3) to make the impractically
expensive calculation feasible without the loss of numerical accuracy.
In the present calculations, the impingement of two identical inclined
vortex rings has been studied, and the computation time has been
reduced by a factor of 1000 at N = 1.18×106 where N is the number of
vortex elements. The direct and MDGRAPE-3 calculations both have
a scaling of O(N2), and the use of the FMM brings them both down to
O(N). The global kinetic energy, enstrophy and energy spectra have
been investigated to address the numerical accuracy and have good
agreement with other similar works.

1. INTRODUCTION

The vortex methods have been developed and applied to analysis of
complicated, unsteady and vortical flows related with problems in a
wide range of industries, because they consist of simple algorithm
based on physics of flow. Leonard [1] summarized the basic algorithm
and example of its applications. The main difficulties with vortex
methods as originally formulated are those of the cost and accuracy of
the evaluation of the velocity field induced by N vortices. The cost of
the evolution of velocity is O(N2), and it increases according to the
number of vortices N . The vortex method calculation is expensive,
particularly in three dimensions where a large number of elements are
computed simultaneously, and calculation load becomes impractically
expensive.

There are two ways to reduce calculation cost to simulate those
complex fluid flows. One is to use fast algorithms such as the
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tree code developed by Barnes and Hut [2] or the fast multipole
method (FMM) by Greengard and Rokhlin [3]. The tree code is an
O(N log N) algorithm based on a hierarchical oct-tree representation
of space in three dimensions. In the FMM, the long-range forces
are approximated by multipole expansion truncated at a certain
degree, while the contributions from particles within nearby regions
are calculated directly in a usual manner without approximation. In
particular, the computation of high-order term is very expensive.

The other way is to execute the flow simulation with special
purpose hardware such as MDGRAPE-3 (developed by Narumi et
al. [4]). One of the GRAPE (Gravity Pipe, developed by Sugimoto et
al. [5]) series machines is a special-purpose computer exclusively
designed for molecular dynamics simulations. Its performance is
8 ∼ 30 times higher than MDGRAPE-2 (predecessor of MDGRAPE-
3) and 10 ∼ 1000 times higher than general-purpose (defined as ‘host’
hereafter) computers of the same cost.

The long computation time due to the above-mentioned O(N2)
problem has been reduced 50 times when we apply a special-
purpose computer, MDGRPAE-2 shown in [6]. Although it can
speed up velocity calculation significantly, the calculation cost is still
proportional with N2 for direct summation algorithm. Implementation
of fast algorithms on MDGRAPE-3 therefore is demanded for
large scale simulations. The first implementation of fast algorithm
(treecode) on GRAPE presented in [7] is 30–50 times faster than
the treecode without GRAPE. The second implementation of another
fast algorithm (FMM) on MDGRAPE-2 presented in [8] speeds up
significantly compared to treecode and direct summation algorithm at
high accuracy.

The purpose of the present paper is, therefore, to implement
the fast multipole method (FMM) whose time complexity is O(N)
on MDGRAPE-3 for the calculation of impingement of two identical
inclined vortex rings. Since MDGRAPE-3 can only operate with point-
charge or point-mass interaction, we modify the original FMM so that
FMM can be run on MDGRAPE-3. This implementation combines
advantages of fast algorithm and fast hardware thus delivers good
performance for velocity calculation with high accuracy.

This paper presents the implementation, numerical results of
accuracy and gives performance comparison with implementation of
FMM and direct summation on MDGRAPE-3. The simultaneous use
of the above two methods is possible since the MDGRAPE-3 still has
a scaling of O

(
N2

)
, and the FMM can be used to reduce it. With

the help of these acceleration techniques, the present study compares
the time variation of kinetic energy, enstrophy and energy spectra with
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other similar works for the same flow field.

2. NUMERICAL METHODS

2.1. Vortex Methods

Vortex methods are part of a wider class of methods: the Lagrangian
methods are used to simulate unsteady, convection-dominated,
problems. Those are expressed by transport equations written in
conservative form, often with a diffusion term, and eventually with
a source/depletion term [9]. Here we will briefly discuss about the
formulation of three-dimensional vortex element method as follows.

2.1.1. Formulation of 3D Vortex Element Method (VEM)

Vortex element methods have been growing in popularity in last three
decades. As their name indicates, they are based on the discretization
of vorticity—a quantity that has a compact support in many physical
problems—thereby making this approach interesting [10].

The three-dimensional incompressible flow of a viscous fluid has
been studied here. The evolution equation for vorticity is

Dωi

Dt
= (ωi · ∇)u + ν∇2ωi (1)

where ωi is the vorticity defined as ωi = ∇×u; u is the velocity of the
vortex element; (ω · ∇)u is called the stretching term and represents
the rate of change of vorticity by deformation of vortex lines; ν is
the kinematic viscosity; and the term ν∇2ωi represents the change of
vorticity by viscous diffusion. The velocity field in a three-dimensional
problem is,

u(x) = − 1
4π

∫
(x− x′)× ω(x′)

|x− x′|3 dV (x′) (2)

where x and x′ are the positions of vortex elements, and dV is the
volume of the element. Using the Winckelmans [11] model as a cut-off
function:

ζ =
1

(2πσ2)d/2
exp

(
−|xj − xi|2

2σ2

)
. (3)

Then the Biot-Savart law is formulated as follows

ui = − 1
4π

N∑

j=1

r2
ij + (5/2)σ2

j(
r2
ij + σ2

j

)5/2
rij × γj (4)
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where rij = ri − rj , σj and γj are the distances of the position vector,
core radius and strength of element. The subscript i stands for the
target elements, while j stands for the source elements. The stretching
term of Eq. (1) can be discretized as follows:

dωi

dt
= (ωi · ∇)u (5)

If we put vortex strength γi = ωid
3xi in Eq. (5), then it becomes

dγi

dt
= (γi · ∇) ui (6)

Hence, the vortex strength of an individual element is expressed
by Eq. (4) in a discretized formulation as

dγi

dt
=

1
4π

∑

j=1




− |rij |2 + (5/2)σ2

j(
|rij |2 + σ2

j

)5/2
γi × γj

+3
|rij |2 + (7/2)σ2

j(
|rij |2 + σ2

j

)7/2
(γi · rij) (rij × γj)





(7)

where all notations carry the same meaning as in Eq. (4). For detailed
mathematical formulations see in [6, 12].

2.2. Fast Multipole Method

Fast multipole method (FMM) was first presented in [3] for two-
dimensional case and was extended to three dimension. The
implementation detail for three-dimensional case is given in [13–15].
Here we describe in brief the non-adaptive version of FMM for three-
dimensional case of vortex method calculations as follows.

The Biot-Savart Eq. (4)

ui =
∑

j

γjζ ×∇G, (8)

and the stretching term (6)

Dγi

Dt
= γi · ∇ui = γi · ∇

∑

j

γjζ ×∇G =
∑

j

γjζ ×∇∇G · γi, (9)

are calculated using the FMM in order to reduce the complexity from
O(N2) to O(N). G is the Green’s function of the Laplace equation,
which is 1/4πr in 3-D. ζ is the cutoff function, which we define in (3).
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For the FMM equations, we will adopt the conventions used in [16].
By doing so, the Green’s function can be expressed by the multipole
expansion

∑

j

G =
1
4π

p∑

n=0

n∑
m=−n

r−n−1
i Y m

n (θi, φi)︸ ︷︷ ︸
S





N∑

j=1

ρn
j Y −m

n (αj , βj)





︸ ︷︷ ︸
M

, (10)

and also the local expansion

∑

j

G =
1
4π

p∑

n=0

n∑
m=−n

rn
i Y m

n (θi, φi)︸ ︷︷ ︸
R





N∑

j=1

ρ−n−1
j Y −m

n (αj , βj)





︸ ︷︷ ︸
L

. (11)

We define the operators S, M , R, L to simplify the equations in the
following steps. Using these operators, (8) can be written as

ui =
1
4π

p∑

n=0

n∑
m=−n

γjM ×∇S (12)

ui =
1
4π

p∑

n=0

n∑
m=−n

γjL×∇R. (13)

Similarly, (9) can be written as

Dγi

Dt
=

1
4π

p∑

n=0

n∑
m=−n

γj∇M × (γi · ∇S) (14)

Dγi

Dt
=

1
4π

p∑

n=0

n∑
m=−n

γj∇L× (γi · ∇R) . (15)

The cutoff function does not appear in these equations since they are
used to calculate the effect of the far field, for which it would have
negligible effect. A schematic of the flow of calculation is shown in
Fig. 1. For example, we want to calculate the induced velocity of
the particles in the dark grey box in the first figure. The flow of the
calculation is as follows.

Step 1© Calculate γjM for all boxes. The summation in the M
operator is for all particles in each box.
Step 2© Translate the multipole expansion to the center of larger
boxes. The translation operators also follow that of [16].
Step 3© Translate γjM to γjL. Note that this translation is valid
only for non-neighboring boxes.
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1 2 3 4 5 6 7

Figure 1. Flow of FMM calculation.

Step 4© Translate the local expansion to the center of smaller
boxes.
Step 5© Translate γjM to γjL for the remaining boxes.
Step 6© Calculate the induced velocity using (13).
Step 7© Calculate the remaining induced velocity using (8) for all
particles in the light grey box in the last figure.
The calculation of the stretching term is done in the same manner

by first calculating γj∇M , then γj∇L and finally (15) and (9).
The schematic in Fig. 1 only shows two levels of box divisions, but
the actual calculation requires several more division levels. In such
calculations, Steps 2©, 4© and 5© are calculated more than once. The
entire calculation process requires an efficient method for indexing and
bookkeeping of the particles and boxes in each level. For the indexing
and bookkeeping we adopt the method by Gumerov [17].

The most time consuming parts of the FMM are the multipole to
local (M2L) translation (Step 5©) and the direct calculation (the final
step). The balance between these two steps are dependent on the level
of box divisions. Dividing the particles into excessively small boxes
will result in an enormous amount of multipole to local translations,
whereas not dividing them enough would result in a large amount
of direct calculation of neighboring particles. These two steps must
be balanced by changing the level of box divisions according to the
number of particles being calculated. The related discussion can be
found in [18–20].

3. HIGH-PERFORMANCE COMPUTING TECHNIQUES

3.1. The MDGRAPE-3 System

MDGRAPE-3 is a successor of MDGRAPE-2 and the third model of
MD-GRAPE series. The nominal peak performance of the board for
a Coulomb force calculation is 2.16 TFLOPS at 250 MHz for classical
molecular dynamics simulations [4, 21]. The basic architecture and
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calculation systems are similar to its predecessor, MDGRAPE-2. The
brief introduction of this processor is as follows.

The block diagram of an MDGRAPE-3 board can be seen in [4]
(Fig. 1). It consists of twelve MDGRAPE-3 chips, and each chip
is connected in serial to send/receive the data. Since the memory
is embedded in the MDGRAPE-3 chip, the board will be extremely
simple. The speed of the communication between the chips will
be 1.3Gbytes/sec, which corresponds to an 80-bit word transfer at
133MHz. For these connections 1.5 V-CMOS I/O cells will be used.
The board has a control FPGA (or ASIC) with a special bus with
1Gbytes/sec peak speed.

3.1.1. Calculations System

Figure 2 depicts the calculation systems of this special-purpose
computer. One small MDGRAPE-3 board (consists of 2 chips) has
the peak performance of 330 GFlops. In order to communicate with
the host computer, a field-programmable gate array (FPGA, Xilinx
XC2VP30) is installed on the board. It also controls the chips, thermal
sensors, and so on. The board is connected to the host by a 10-Gbps
serial communication link with a 4-lane 2.5-Gbps Xilinx RocketIO
through an InfiniBand cable. The host computer has an interface card
with an FPGA (Xilinx XC2VP7) attached to a PCI-X bus (Fig. 2). For
the present calculations, Xeon 5160 (3.0GHz) duel core processor has
been used as a host PC. The calculation and data transfer systems are
the same as that of MDGRAPE-2. It can speed up force calculation
about 100–1000 times faster than that of general purpose computers
of the same cost. The time complexity of force calculation is O(N2)
for direct summation algorithm.

Host PC

Position , function table

Induced velocity

MDGRAPE-3 Board

PCI- X Interface

Position, Integration, etc. Data Transfer Velocity Calculation

Figure 2. The basic structure of vortex methods calculation
inMDGRAPE-3 system.
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3.2. FMM on MDGRAPE-3

The MDGRAPE-3 is the third model of a special purpose computer
designed for molecular dynamics calculations. The vortex method has
been used on the second model MDGRAPE-2 by the present author [6]
for calculating the collision of vortex rings. The present study focuses
on the simultaneous use of the FMM and MDGRAPE-3 for the same
flow field. One major problem in this sense is that the MDGRAPE
chips can only handle two types of calculations. The Coulomb potential

pi =
N∑

j=1

bjg
(
a|rij |2

)
, (16)

and Coulomb force

fi =
N∑

j=1

bjg
(
a|rij |2

)
rij . (17)

g() is an arbitrary function, which must be defined prior to the
calculation. a and bj are constants, which can be used for scaling.
The direct form of the Biot-Savart Eq. (8) and the stretching term (9)
can be calculated by using a combination of (16) and (17), but the
multipole and local expansions and their translations are impossible
to calculate. Therefore, the MDGRAPE-3 can only be used for the
final step of the FMM where it calculates the direct interaction of
particles. This in turn will prevent the optimum level of box divisions
from growing, and this method will no longer have a complexity of
O(N).

The inefficiency of the above method resides in the fact that only
one of the two hot spots of the FMM is calculated on the MDGRAPE-
3. It is possible to calculate both hot spots on the FMM if we can
convert the multipole to local translation into a direct calculation.
This requires the use of two independent methods, the Poisson integral
method [22] and pseudo-particle method [23]. Instead of calculating
the multipole and local expansions at the center of the boxes, these
methods calculate the physical properties of interest at quadrature
points placed on a spherical shell surrounding the boxes. In contrast to
the original FMM, which uses 5 different equations for the expansions
and translations, these methods use only 2, one for the multipole
translation

Qi =
N∑

j=1

qi

p∑

n=0

2n + 1
K

(
ρj

rs

)n

Pn (cos γij) (18)
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and another for local translations

Qi =
N∑

j=1

qi

p∑

n=0

2n + 1
K

(
rs

ρj

)n+1

Pn (cos γij) . (19)

The notations still follow that of [16], but additional variables have
been introduced. Q and q are the physical properties of interest, which
are the potential for Anderson’s method and circulation for Makino’s
method. Q represents the physical property after the translation and
q represents the one before. K is the number of quadrature points on
the sphere surrounding the box, so the index i runs from 1 to K, and
rs is the radius of this sphere. γij is the angle between the position
vector of source and target particles. Given that xi = (ri, θi, φi) and
xj = (ρj , αj , βj), γij can be written as

cos γij =
xi · xj

riρj
(20)

Next, we will give a brief explanation of how these two methods
are actually used, by considering an example analogous to the one
shown in Fig. 1. We will assume that we are calculating the Biot-
Savart equation. The flow of calculation is shown in Fig. 3. In this
procedure the potential equation

Φi =
N∑

j=1

γj

4πrij
(21)

is also calculated.

Step 1© (21) is calculated for the quadrature points on a large
sphere, having a radius twice as that of the circumscribing sphere.
Then we solve a system of equations to calculate the circulation
of the quadrature points on the circumscribing sphere.
Step 2© Makino’s method (18) is used to translate the circulation
onto the larger spheres.

1 2 3 4 5 6 7

Figure 3. Flow of FMM calculation without multipoles.
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Step 3© (21) is calculated for the quadrature points on the non-
neighboring spheres. In the corresponding figure only the adjacent
boxes (3 × 3) are defined as neighbors, which is different from
the actual case. Since the interaction is calculated between the
quadrature points on the circumscribing sphere instead of the
multipole moments at the center of the box, the quadrature
points become too close for a far field approximation. In our
method we expand the definition of neighbors to a larger region
(5× 5) to retain accuracy. Consequently, the coarsest level in this
calculation should be level 3 instead of 2.
Step 4© Anderson’s method (19) is used to translate the potential
onto the smaller spheres.
Step 5© (21) is calculated for the quadrature points on the
remaining non-neighboring spheres. The neighbor region is 5× 5,
so the number of source boxes can reach 875 per target. This
increase is quite large and will slow down the method considerably
as we will show later.
Step 6© Solve a system of equations to determine the circulation
of the quadrature points on a large sphere, having a radius twice
as that of the circumscribing sphere. Then, calculate (8) to obtain
the velocity of all particles in the corresponding box.
Step 7© Calculate the remaining induced velocity using (8) for all
particles in the light grey box in the last figure.

Now, the two most time consuming Steps 5© and 7© can both
be calculated on the MDGRAPE-3. In this case the complexity of
the calculation should remain O(N). We also constructed a pseudo-
particle tree code by skipping Steps 3©, 4©, and 5© and directly
calculating the local expansion at each level.

3.3. Hot-spot of FMM Calculation

Here we focus on the hot-spot of FMM calculation and the possibility to
use MDGRAPE-3. Fig. 4 represents the hot spots of FMM calculation.
If we want to calculate for light gray box, far particles are solved by
FMM, and the neighbor particles are solved directly. First step is
to calculate Multipole to Multipole (called M2M) translation that is
the summation for all particles in each box and translate the multipole
expansion to the center of larger boxes. Then it performs the multipole
to local (M2L) translation. Here red is source particle, and blue
is target. Note that M2L cannot be preformed for neighbors. The
next step is to translate the local expansion to the center of smaller
boxes. Then again preform M2L calculation for the remaining boxes.
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Calculate the induced velocity up to this step. Many sources act on
one target in this step, and this is one of the hot-spots of the FMM
calculation. Finally, calculate the remaining induced velocity by direct
calculation for all particles in the light gray box. If the box is too
coarse this could also be the hot-spot of the FMM calculation.

The most time consuming parts of the FMM are the multipole
to local (M2L) translation and the direct calculation. The balance
between these two steps is dependent on the level of box divisions.
Dividing the particles into excessively small boxes will result in an
enormous amount of multipole to local translations, whereas not
dividing them enough would result in a large amount of direct
calculation of neighboring particles. These two steps must be balanced
by changing the level of box divisions according to the number of
particles being calculated.

The last plot (most left of below) of Fig. 4 shows the CPU time for
different steps of FMM calculations. It can be easily observed that the
Direct and M2L calculations consumed most of the time. The CPU
time of the rest steps is negligible. It is necessary to balance the cost
of direct and M2L calculations.

M2M M2L L2L

red is

source

blue is

target

Neighbor particles are solved directly
M2L

+

If I want to calculate for this box

Far particles are solved by the FMM

Many sources acting  on  one target

This  is  the hot- spot of  the FMM

Direct

If the box is too coarse

this could also be the hot-spot

General rule : M2L can not be preformed for neighbors

Direct

M2L

Figure 4. Hot-spot of FMM calculation.
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Figure 5. Elapsed time on MDGRAPE-3 (Biot-Savart).

The elapsed time has been investigated for every step of FMM
calculation with and without the use of MDGRAPE-3. This analysis
will lead to estimating and optimizing the calculation cost and use of
both techniques to implement in actual vortex method calculations.

Figure 5 shows the elapsed time to implement the FMM and the
FMM on MDGRAPE-3 for Biot-Savart calculation which calculates
induced velocity from vorticity transport equation, Eq. (1). Elapsed
time of different calculations are represented in different colours.
It can be easily seen that the brown colour consumed half of the
total time in both cases which stands for direct calculation. This
means that it is required to reduce direct calculation time to get
the maximum efficiency of these methods. In Fig. 5(b), multipole to
local translation (M2L) consumed second most time, contrary to FMM
on MDGRAPE-3. This may cause the limitations of MDGRAPE-3
hardware specifications.

3.4. Performance

The calculation cost and accuracy are an important issue for any
numerical simulation. In this calculation these two factors have been
investigated carefully. The calculation has been accelerated retained
the accuracy at an acceptable level. The CPU time has been compared
with different acceleration techniques at one time step by changing the
number of particles.

The L2 norm error is defined as the difference in the induced
velocity of the same particles between the host and MDGRAPE for
the same time step as follows.

L2(norm error)=
∑

((uhost−umd)2+(vhost − vmd)2+(whost − wmd)2)∑
(u2

host + v2
host + w2

host)
(22)
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where the suffices md and host are represented with and without the
use of MDGRAPE, respectively.

The Biot-Savart and stretching term calculations are performed
separately and evaluate the CPU time for different element numbers.
The same calculations are done with and without the MDGRAPE-3.
The CPU time of the Biot-Savart and Stretching term calculation for
one time step is plotted against the number of elements in Fig. 6. The
L2 norm error between the direct calculation and FMM calculations
are also shown in Fig. 7.

The CPU time for all methods (when optimized) are plotted
in Fig. 6. Xeon 5160, MDG3, FMM, and FMM-MDG3 represent
the calculation without FMM or MDGRAPE-3, with MDGRAPE-3,
with FMM, with FMM and MDGRAPE-3. The direct calculation
without MDGRAPE-3 has a high asymptotic constant and an order
of O(N2). All calculations were performed on a dual core Xeon 5160
(3.0GHz) processor. The direct calculation on MDGRAPE-3 has a low
asymptotic constant but still has a scaling of O(N2). On the contrary,
the FMM without MDGRAPE-3 has a high asymptotic constant, but
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its complexity is O(N) in both cases (Figs. 6(a) and 6(b)). The
combination of FMM and MDGRAPE-3 results in a calculation with a
low asymptotic constant and O(N) complexity. At N = 106 the FMM
on MDGRAPE-3 is approximately 4 times faster than the FMM.

The cost of original FMM was O(N log N), but in our case it is
close to O(N), which is probably due to the order of multipole moment
and MDGRAPE-3. We have set the order of moment P = 10 in all
calculations. This number has been set after rigorous investigation of
the accuracy and calculation time. The “P” has great effect on the
accuracy of FMM calculation.

The accuracy as a L2 norm error achieved by the combination
of FMM and MDGRAPE-3 has been plotted for the Biot-Savart and
stretching term calculations, without any acceleration, with FMM,
MDGRAPE-3, and both FMM and MDGRAPE-3 in Fig. 7. The
MDGRAPE-3 has a small error compared to FMM and in combination
with both in Fig. 7(a). The error of MDGRAPE-3 is controlled by its
system, and using FMM this error slightly increases as in the same
order of magnitude compared with FMM. The calculation time takes
longer, and the L2 norm error becomes larger for large N in the case of
stretching term calculations (Figs. 6(b) and 7(b)) compared with Biot-
Savart calculation. This error may be caused by the vortex strength
and the discretization error of stretching term.

The quantitative acceleration ratio for N = 106 is given in
Table 1. For Biot-Savart calculation, the FMM alone accelerates
the calculation 462 times, and simultaneous use of the MDGRAPE-
3 further accelerates it 4.1 times. From a different perspective,
the MDGRAPE-3 can accelerate the calculation 119 times, but the
simultaneous use of the FMM allows a 16 fold increase from that.
Similarly, the stretching term calculation is 613 times faster when we
use the FMM, and another 2.8 times faster when we combine it with
the MDGRAPE-3. The MDGRAPE-3 accelerates the stretching term
calculation 52 times, and another 33 times if we use the FMM on it.

Table 1. Accelaration ratio at N = 106.

Biot-Savart stretching
direct direct

↓ ×462 ↓ ×119 ↓ ×613 ↓ ×52
FMM MDG3 FMM MDG3
↓ ×4.1 ↓ ×16 ↓ ×2.8 ↓ ×33

FMM+ MDG3 FMM +MDG3
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4. APPLICATIONS

4.1. Calculation Conditions

We considered inclined collisions according to [6] to check and validate
our new scheme. Here we assumed that the initial radius of the vortex
rings was R = 1 while the cross-section radius r = 0.05 (see Fig. 8).
The Reynolds number based on the ring circulation was ReΓ = 400,
and the core radius σ = 0.065. The rings were inclined at an angle
θ = 15◦ relative to the z-axis. The total number of elements used
for the previous calculation was N = 6 × 104, with the number
of cross sections in the circumference direction being 502, while 61
elements were distributed in each cross-section. The total number of
elements used for the present calculation was N = 1 · 2 × 106, with
the number of cross sections in the circumference direction being 1495,
while 397 elements were distributed in each cross-section. All elements
were evenly distributed. This number was 2 to 15 times larger than
the previous calculations done by the present author and the other
researchers for the same flow field.

S

z

r

R

θ

x

y

Figure 8. Initial condition for the computation of the collision of two
vortex rings. Here R — radius of ring, r — radius of cross-section, S
— distance between two rings, θ — inclined angle.

In this calculation, the viscous diffusion was calculated using the
core-spreading method developed by Leonard [1]. For convection of
the particles, the second order accurate Adams-Bashforth method was
used in the calculation of time advances.

The error was defined as the difference in the induced velocity of



342 Sheel

the same particles between the host and MDGRAPE for the same time
step as of Eq. (22). Here error was defined as the distance δ instead of
L2.

The kinetic energy E and enstrophy Ω are evaluated from the
particle positions and strengths according to [11], which are defined as
follows.

E =
1

16π

∑

i,j


 2 (γi · γj)(

r2
ij + σ2

j

)1/2
+
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(
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j
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and
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The energy spectra are calculated along the z-axis at selected
times.

4.2. Results and Discussion

The main focus of this article is to accelerate the calculation by
simultaneous use of FMM and MDGRAPE-3. Before analyzing the
new scheme we first confirmed our previous calculations for this model
as follows one by one. Fig. 9(a) shows the calculation time against the
number of vortex elements with and without the use of MDGRAPE.
The legends ‘Host2’, ‘Host3’, ‘MDG2’, and ‘MDG3’ correspond to
the calculations without and with the use of MDGRAPE-2 and
MDGRAPE-3, respectively. It is clearly observed that the calculation
time is reduced by a factor of 50 and 100 with the use of MDGRAPE-2
and -3, respectively for N ∼ 105. On the other hand, MDGRAPE-3 is
25 times faster than MDGRAPE-2 with the same cost. It is important
to produce an optimum function table in order to calculate the cut-off
function by considering the computational domain where the vortex
elements are distributed. The function g (w) (Eqs. (16) and (17)) is
created prior to calculation and read during calculation. The domain of
the function g (w) is set to wmin ≤ w ≤ wmax where (wmax/wmin) ≤ 232

according to hardware specifications, for details see in [6, 12]. Fig. 9(b)
represents the ranges and scaling errors of function table where the x-
axis stands for the range of the function g(w) and the y-axis for induced
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Figure 9. Acceleration and accuracy of MDGRAPE-2 and
MDGRAPE-3.

velocity u. In our calculation, the table has been produced within
the finite range of 2−12 ≤ w ≤ 220 which satisfies the computational
domain of original calculation to obtain significant accuracy. This
figure also presents the error of the induced velocity which affects
the convection of vortex elements and generates discrepancies within
the calculation without MDGRAPE where they coincided each other.
Fig. 9(c) presents the maximum error (22) for Biot-Savart calculation
compared between MDGRAPE-2 and MDGRAPE-3. It is shown that
both error are in similar order of magnitude. MDGRAPE-3 gives less
error for small number of elements while large error for large number
compared with MDGRAPE-2. It may be caused by slightly different
hardware specifications.

Figure 10 shows the instantaneous flow patterns of vortex elements
of two colliding vortex rings in various time stages. The initial setup in
colliding ring simulations consists of two identical vortex rings initially
inclined at an angle θ = 15◦. In Fig. 10(a), the rings are initially
placed at a non-dimensional distance of s = 2.4 in the z-direction.
Each vortex ring is approached by self-induced velocity from this initial
stage. At tΓ/R2 = 5 in Fig. 10(b), the first impact occurs, and the
two vortex rings are stretched and deformed. As time progresses,
considerable differences appear in each stage. At tΓ/R2 = 10, the
arced-shape structure is formed, and the downward stretch is strong
(see Fig. 10(d)).

The evolution of the kinetic energy and enstrophy of Host,
FMM, MDGRAPE-2, and MDGRAPE-3 compared with Winckelmans
work are shown in Fig. 11. In the present calculations the flow
is incompressible and unbounded, so there are physically no kinetic
energy sources. The kinetic energy can be dissipated by both viscosity
and numerical errors. From the comparison between the results
obtained with the various time steps, it has been observed that there
is no significant difference between host calculation and others. It is
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(a) tΓ/R  = 12 (b) tΓ/R  = 52

(c) tΓ/R  = 82 (d) tΓ/R  = 102

Figure 10. Instantaneous flow patterns (N = 1e5).

shown in Fig. 11(a) for the time step ∆t = 0.08, and it is easily observed
that the agreement with the existing data of [11] is also satisfactory.
The difference in the decay of enstrophy (see Fig. 11(b)) is observed
between the present computation and that by [11], though this is due to
the difference in the treatment of viscous diffusion schemes. A similar
tendency has also been observed in the computation of two-dimensional
homogeneous isotropic turbulence by [24]. Thus the overall tendency
of the present calculation is satisfactory for the assessment of the
MDGRAPE-3 and FMM.

Figure 12 presents the evolution of energy spectra and
corresponding decay of energy and enstrophy for a different number
of particles at the same time step. Figs. 12(a) to (c) present
compared results for a different number of elements at tΓ/R2 = 10
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Figure 12. Energy spectrum and decay of energy & enstrophy.

while Figs. 12(d) to (f) represent different time stages for N = 1e5.
Figs. 12(a) and (d) show the one-dimensional longitudinal power
energy spectra by the core spreading method. The spectra are
calculated from the velocity distribution along z-axis. When the
energy spectra from N = 4e3 to N = 1e5 and at tΓ/R2 = 2.0 is
compared to the one at tΓ/R2 = 10.0, the spectra are extended to
higher wave number region as elements increase and time progress.
The effect of a large number of elements appears in high wave number
regions in Fig. 12(d), and the spectrum at tΓ/R2 = 10.0 comes up to
k = 32 and then declines. It is well known that the energy spectra
based on the Kolmogorov universal scale at high wave regions have the
particular tendency, which is independent of the flow characteristics.
According to the results in Figs. 12(a) and (d), the energy spectra
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decrease with wave numbers, which means that the energy cascade
mechanism is reasonably simulated. In the present calculation, the
energy spectra diverge with increased number of particles and progress
of time. This is the common behavior of core spreading method
without splitting or merging for large number of particles as noted
by Cottet [25] and Fukuda [26]. Our results have similar behaviour up
to some extent to the work of [26] (not shown here) even the initial
conditions are different. The decay of kinetic energy and enstrophy
in both cases have the same rate and similar tendency to [24] for
two-dimensional homogeneous isotropic turbulence. In both cases,
the results are normalized by the initial result of Kinetic energy and
enstrophy. Further improvement is considered by using splitting and
merging of core spreading method at the first place in the subsequent
work.

5. CONCLUSIONS

Vortex method calculations were accelerated by the simultaneous
use of the fast multipole method and MDGRAPE-3. Out of the 4
fast algorithms we compared, the rotation based FMM with direct
summation on the MDGRAPE-3 was the fastest. The FMM on
MDGRAPE-3 is 16 times faster than the MDGRAPE-3 itself, and
4.1 times faster than the FMM on a Intel Xeon (3 GHz) for the Biot-
Savart calculation of N = 106 elements. The time evolution of kinetic
energy and enstrophy have been calculated and retained the numerical
accuracy at certain level. The analyzed energy spectra have been
successfully simulated by using this acceleration techniques.

ACKNOWLEDGMENT

The author thanks his Ph.D. supervisor, Prof. S. Obi, Keio University,
Japan for valuable guidance during this work. He also thanks
Prof. Kenji Yasuoka, Keio University, Japan for his support from
computational tools especially MDGRAPEs machine. The author is
very much grateful for financial supports from Yoshida Scholarship
Foundation and Amano Scholarship Foundation in Japan during his
Ph.D. research.

REFERENCES

1. Leonard, A., “Vortex methods for flow simulations,” J. Comput.
Phys., Vol. 37, 289–335, 1980.

2. Barnes, J. E. and P. Hut, “A hierarchical O(N log N) force
calculation algorithm,” Nature, Vol. 324, 446–449, 1986.



Progress In Electromagnetics Research B, Vol. 27, 2011 347

3. Greengard, L. and V. Rokhlin, “A fast algorithm for particle
simulations,” J. Comput. Phys., Vol. 73, 325–348, 1987.

4. Narumi, T., Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga,
N. Futatsugi, R. Yanai, R. Himeno, S. Fujikawa, M. Ikei, and
M. Taiji, “A 55 TFLOPS simulation of amyloid-forming peptides
from yeast prion sup35 with the specialpurpose computer system
MDGRAPE-3,” Proceedings of the SC06 (High Performance
Computing, Networking, Storage and Analysis), CDROM, Tampa,
USA, 2006.

5. Sugimoto, D., Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki,
and M. Umemura, “A special-purpose computer for gravitational
many-body problems,” Nature, Vol. 345, 33–35, 1990.

6. Sheel, T. K., K. Yasuoka, and S. Obi, “Fast vortex method
calculation using a special-purpose computer,” Computers and
Fluids, Vol. 36, 1319–26, 2007.

7. Makino, J., “Treecode with a special-purpose processor,” Pub. of
the Astronomical Society of Japan, Vol. 43, 621–638, 1991.

8. Chau, N. H., A. Kawai, and T. Ebisuzaki, “Implementation of fast
multipole algorithm on special-purpose computer MDGRAPE-
2,” Proc. of the 6th World Multiconference on Systematics,
Cybernetics and Informatics SCI 2002’, Vol. XVI(2002), 477–481,
USA, 2002.

9. Shankar, S., “A new mesh-free vortex method,” Ph.D. Thesis, The
Florida State University, 1996.

10. Chatelain, P., “Contributions to the three-dimensional vortex
element method and spinning bluff body flows,” Ph.D. Thesis,
California Institute of Technology, 2005.

11. Winckelmans, G. S. and A. Leonard, “Contributions to vortex
particle methods for the computation of three-dimensional
incompressible unsteady flows,” J. Comput. Phys., Vol. 109, 247–
273, 1993.

12. Sheel, T. K., R. Yokota, K. Yasuoka, and S. Obi, “The study
of colliding vortex rings using a special-purpose computer and
FMM,” Transactions of the Japan Society for Computational
Engineering and Science, Vol. 2008, 20080003, 2008.

13. Greengard, L. and V. Rokhlin, Rapid Evaluation of Potential
Fields in Three Dimensions, in Vortex Methods, Edited by
C. Anderson and C. Greengard, Number 1360 in Lecture Notes in
Mathematics, 121–141, Springer-Verlag, Berlin, 1988.

14. Sanjay, V. and W. C. Chew, “Analysis and performance of a
distributed memory multilevel fast multipole algorithm,” IEEE
Trans. Antennas Propag., Vol. 53, 2719–2727, 2005.



348 Sheel

15. Chew, W. C., J. M. Jin, and M. Eric, Fast and Efficient Algorithms
in Computational Electromagnetics, Artech House Publishers,
2001.

16. Cheng, H., L. Greengard, and V. Rokhlin, “A fast adaptive
multipole algorithm in three dimensions,” J. Comp. Phys.,
Vol. 155, 468–498, 1999.

17. Gumerov, N. A. and R. Duraiswami, Fast Multipole Methods for
the Helmholtz Equation in Three Dimensions, Elsevier, 2004.

18. Xu, K., D. Z. Ding, Z. H. Fan, and R. S. Chen, “Multilevel
fast multipole algorithm enhanced by GPU parallel technique
for electromagnetic scattering problems,” Microwave and Optical
Technology Letters, Vol. 53, 502–507, 2010.

19. Ravnik, J., S. Leopold, and Z. Zoran, “Fast single domainsubdo-
main BEM algorithm for 3D incompressible fluid flow and heat
transfer,” IJNME, Vol. 77, 1627–1645, 2009.

20. Rui, P.-L., R.-S. Chen, Z.-W. Liu, and Y.-N. Gan, “Schwarz-
Krylov subspace method for MLFMM analysis of electromag-
netic wave scattering problems,” Progress In Electromagnetics Re-
search, Vol. 82, 51–63, 2008.

21. Taiji, M., T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga,
N. Takada, and A. Konagaya, “Protein explorer: A petaflops
special-purpose computer system for molecular dynamics simu-
lations,” Proc. Supercomputing, in CD-ROM, USA, 2003.

22. Anderson, C. R., “An implementation of the fast multipole
method without multipoles,” SIAM J. Sci. Stat. Comput., Vol. 13,
923–947, 1992.

23. Makino, J., “Yet another fast multipole method without
multipoles-pseudo-particle multipole method,” J. Comput. Phys.,
Vol. 151, 910–920, 1999.

24. Totsuka, Y. and S. Obi, “A validation of viscous dissipation
models for fast vortex methods in simulations of decaying
turbulence,” Journal of Fluid Science and Technology, Vol. 2,
No. 1, 248–257, 2007.

25. Cottet, G.-H., B. Michaux, S. Ossia, and G. VanderLinden, “A
comparison of spectral and vortex methods in three-dimensional
incompressible flows”, J. Comp. Phys., Vol. 175, 702–712, 2002.

26. Fukuda, K. and K. Kamemoto, “Application of a redistribution
model incorporated in a vortex method to turbulent flow analysis,”
The 3rd International Conference on Vortex Flows and Vortex
Methods, 131–136, Japan, 2005.


