Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-25
Fast Analysis of Microstrip Antennas Over a Frequency Band Using an Accurate MoM Matrix Interpolation Technique
By
Progress In Electromagnetics Research, Vol. 109, 301-324, 2010
Abstract
A novel method based on the hybrid volume-surface integral equation (VSIE) and the impedance matrix interpolation technique is presented for the fast analysis of microstrip antennas in frequency sweeps. A novel impedance matrix interpolation scheme is extended to the impedance matrix associated with VSIE, thus providing high accuracy, high efficiency, and large interpolation bandwidth for metal-dielectric composite problems. To demonstrate the effectiveness and accuracy of the proposed technique, numerical results for typical rectangular patch antennas and a broadband U-slot rectangular patch antenna are presented. Good agreement among the interpolation results, the exact method of moments (MoM) solutions, the finite element method (FEM) solutions, and measured data is observed over the bandwidth. The interpolation bandwidth is further investigated through a scattering problem. Numerical results show that high accuracy is obtainable within 10:1 bandwidth.
Citation
Yikai Chen, Shiwen Yang, Shiquan He, and Zai-Ping Nie, "Fast Analysis of Microstrip Antennas Over a Frequency Band Using an Accurate MoM Matrix Interpolation Technique," Progress In Electromagnetics Research, Vol. 109, 301-324, 2010.
doi:10.2528/PIER10081107
References

1. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.

2. Chew, W. C., J. Jin, C. Lu, E. Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 533-543, Mar. 1997.

3. Chew, W. C. and Q. H. Liu, "Resonance frequency of a rectangular microstrip patch," IEEE Trans. Antennas Propagat., Vol. 36, No. 8, 1045-1056, Aug. 1988.

4. Wilton, D. R., "Review of current status and trends in the use of integral equations in computational electromagnetics," Electromagn., Vol. 12, 287-341, 1992.

5. Chen, C. and N. G. Alexopoulos, "Modeling microstrip line fed slot antennas with arbitrary shape," Electromagn., Vol. 15, No. 5, 567-586, Sept./Oct. 1995.

6. Lu, C. C., "Volume-surface integral equation," Fast and Efficient Algorithms in Computational Electromagnetics, W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Ming (eds.), 487-540, Artech House, Norwood, MA, 2001.

7. Ebadi, S. and K. Forooraghi, "Green's function derivation of an annular waveguide for application in method of moment analysis of annular waveguide slot antennas," Progress In Electromagnetics Research, Vol. 89, 101-119, 2009.

8. Papakanellos, P. J., "Accuracy and complexity assessment of sub-domain moment methods for arrays of thin-wire loops," Progress In Electromagnetics Research, Vol. 78, 1-15, 2008.

9. Lashab, M., F. Benabdelaziz, and C.-E. Zebiri, "Analysis of electromagnetics scattering from reflector and cylindrical antennas using wavelet-based moment method," Progress In Electromagnetics Research, Vol. 76, 357-368, 2007.

10. Zhao, J., W. C. Chew, C. Lu, E. Michielssen, and J. Song, "Thin-stratified medium fast-multipole algorithm for solving microstrip structures," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 4, 395-403, Apr. 1998.

11. Millard, X. and Q. H. Liu, "A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2393-2401, Sep. 2003.

12. Yeo, J. and R. Mittra, "An algorithm for interpolating the frequency variations of method-of-moments matrices arising in the analysis of planar microstrip structures," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 1018-1025, 2003.

13. Liu, Z.-F., P.-S. Kooi, L.-W. Li, M.-S. Leong, and T.-S. Yeo, "A method of moments analysis of a microstrip phased array in three-layered structures," Progress In Electromagnetics Research, Vol. 31, 155-179, 2001.

14. Li, L.-W., Y. Dan, M.-S. Leong, T.-S. Yeo, and J. A. Kong, "Plane wave scattering by an achiral multilayered sphere in an infinitely extended chiral host medium," Progress In Electromagnetics Research, Vol. 33, 261-298, 2001.

15. Poggio, A. J. and E. K. Miller, Integral Equation Solution of Three Dimensional Scattering Problems, Permagon, Elmsford, NY, 1973.

16. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat., Vol. 25, 789-795, 1977.

17. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, 709-718, 1977.

18. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.

19. Mohsen, A. A. K. and A. K. Abdelmageed, "The uniqueness problem of the surface integral equations of a conducting body in a layered medium," Progress In Electromagnetics Research, Vol. 23, 277-300, 1999.

20. Usner, B. C., "Generalized hybrid methods for modeling complex electromagnetic structures,", Ph.D. dissertation, The Ohio State University, 2006.

21. Sarkar, T. K., S. M. Rao, and A. R. Djordjević, "Electromagnetic scattering and radiation from finite microstrip structures," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 11, 1568-1575, Nov. 1990.

22. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Trans. Antennas Propagat., Vol. 39, No. 5, 627-631, May 1991.

23. Kishk, A. A., A. W. Glisson, and P. M. Goggans, "Scattering from conductors with materials of arbitrary thickness," IEEE Trans. Antennas Propagat., Vol. 40, No. 1, 108-111, Jan. 1992.

24. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. of Amer. A, Vol. 11, No. 4, 1383-1398, Apr. 1994.

25. Kolundžija, B. M., "Electromagnetic modeling of composite metallic and dielectric structures," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 7, 1021-1032, Jul. 1999.

26. He, S., Z. Nie, J. Wei, and J. Hu, "A highly efficient numerical solution for dielectric-coated PEC targets," Waves in Random and Complex Media, Vol. 19, No. 1, 65-79, Feb. 2009.

27. Virga, K. L. and Y. Rahmat-Samii, "Efficient wide-band evaluation of mobile communications antennas using [Z] or [Y ] matrix interpolation with the method of moments," IEEE Trans. Antennas Propagat., Vol. 47, No. 1, 65-76, Jan. 1999.

28. Newman, E. H. and D. Forrai, "Scattering from a microstrip patch," IEEE Trans. Antennas Propagat., Vol. 35, No. 3, 245-251, Mar. 1987.

29. Karwowski, A. and A. Noga, "On the interpolation of the frequency variations of the MoM-PO impedance matrix over a wide bandwidth," Microw. Opt. Technol. Lett., Vol. 50, No. 3, 738-741, Mar. 2008.

30. Zhou, H. X. and W. Hong, "Fast generation of [Z] matrix in the method of moments over a wide frequency band by means of Hermite polynomial interpolation," Proc. Asia-Pacific Microw. Conf. (APMC' 02), Vol. 2, 1196-1199, Kyoto, Japan, Nov. 19-22, 2002.

31. Newman, E. H., "Generation of wide-band data from the method of moments by interpolating the impedance matrix," IEEE Trans. Antennas Propag., Vol. 36, No. 12, 1820-1824, Dec. 1988.

32. Li, W., H. Zhou, W. Hong, and T. Weiland, "An accurate interpolation scheme with derivative term for generating MoM matrices in frequency sweeps," IEEE Trans. Antennas Propagat., Vol. 57, No. 8, 2376-2385, Aug. 2009.

33. Gennarelli, C., G. Riccio, C. Savarese, and V. Speranza, "Fast and accurate interpolation of radiated fields over a cylinder," Progress In Electromagnetics Research, Vol. 8, 349-375, 1994.

34. Zeng, Z. and C. C. Lu, "Discretization of hybrid VSIE using mixed mesh elements with zeroth-order galerkin basis functions," IEEE Trans. Antennas Propagat., Vol. 54, No. 6, 1863-1870, Jun. 2006.

35. Wandzura, S., "Electric current basis functions for curved surfaces," Electromagn., Vol. 12, No. 1, 77-91, Jan. 1992.

36. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1982.

37. Havé, P., "A parallel implementation of the fast multipole method for Maxwell's equations," Int. J. Numer. Meth. Fluid, Vol. 43, 839-864, 2003.

38. Makarov, S., S. Kulkarni, A. Marut, and L. Kempel, "Method of moments solution for a printed patch/slot antenna on a thin finite dielectric substrate using the volume integral equation," IEEE Trans. Antennas Propagat., Vol. 54, No. 4, 1174-1184, Apr. 2006.

39. Makarov, S., S. Kulkarni, A. Marut, and L. Kempel, "Design and analysis of wideband planar monopole antennas using the multilevel fast multipole algorithm," Progress In Electromagnetics Research B, Vol. 15, 95-112, 2009.

40. Tong, K., K. Luk, K. Lee, and R. Lee, "A broad-band Uslot rectangular patch antenna on a microwave substrate," IEEE Trans. Antennas Propagat., Vol. 48, No. 6, 954-960, Jun. 2000.

41. Yuan, N., T. Yeo, X. Nie, Y. Gan, and L. Li, "Analysis of probe-fed conformal microstrip antennas on finite grounded substrate," IEEE Trans. Antennas Propagat., Vol. 54, No. 2, 554-563, Feb. 2006.