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Abstract—A novel method based on the hybrid volume-surface
integral equation (VSIE) and the impedance matrix interpolation
technique is presented for the fast analysis of microstrip antennas in
frequency sweeps. A novel impedance matrix interpolation scheme
is extended to the impedance matrix associated with VSIE, thus
providing high accuracy, high efficiency, and large interpolation
bandwidth for metal-dielectric composite problems. To demonstrate
the effectiveness and accuracy of the proposed technique, numerical
results for typical rectangular patch antennas and a broadband U-slot
rectangular patch antenna are presented. Good agreement among the
interpolation results, the exact method of moments (MoM) solutions,
the finite element method (FEM) solutions, and measured data is
observed over the bandwidth. The interpolation bandwidth is further
investigated through a scattering problem. Numerical results show
that high accuracy is obtainable within 10 : 1 bandwidth.

1. INTRODUCTION

The frequency domain integral equation approach is one of the most
popular methods for the analysis of microstrip antennas, due to the
fact that it usually achieves more accurate results than differential
equation solvers such as the finite-difference time-domain (FDTD)
method [1–9]. Among various integral equation approaches, the surface
integral equation (SIE) approach is often used for the analysis of
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microstrip antennas, where the multilayer medium Green’s function is
employed to take into account the effect of the dielectric substrate and
ground plane [10–14]. The major advantage of the SIE approach is its
lower memory requirement, since basis functions are only assigned on
conducting patches. However, the ground and substrate are considered
to be infinite in transverse directions. It is generally understood that
when the substrate edge is close to the radiating patch, the calculated
input impedance and radiation patterns will be inaccurate. Moreover,
the trend toward miniaturization of electronic devices requires the
dimensions of antennas to be as small as possible. Therefore,
the assumption of infinite ground plane and substrate is no longer
appropriate. As another type of surface integral equation method,
the PMCHWT (Poggio, Miller, Chang, Harrington, Wu, and Tsai)
method can be used to analyze problems with finite size substrates [15–
19]. However, some limitations are inherent in the PMCHWT method,
which will prevent its wide use in microstrip antenna analysis. Firstly,
since appropriate Green’s functions are required to represent the
homogeneous material domains, the PMCHWT method can only
handle problems with piecewise homogeneous materials [20]. Secondly,
if the dielectric substrate is overlapped or touched with perfect electric
conducting (PEC) surface, an appropriate junction resolution process
is required to meet the special boundary condition at the interface,
which will increase the difficulty of practical application [21–25].
Finally, the PMCHWT method always suffers from poor convergence
problem, especially when high contrast materials are involved [26].

In this paper, the hybrid volume-surface integral equation (VSIE)
approach [6] is employed to analyze microstrip antennas on finite
size dielectric substrate and ground plane. In this method, the
entire structure comprising the patch, ground plane, feed structure,
and dielectric substrate are assigned with basis functions. The
surface currents on the PEC surface and the volume currents in the
dielectric substrate are obtained by solving the VSIE via the method of
moments (MoM). Other parameters of interests in radiation problems
such as the input impedance, directivity, and radiation patterns can
be readily obtained from the solved currents. As compared with
the PMCHWT method, the VSIE method generally requires larger
number of unknowns for problems with single substrate material.
However, it is not a serious problem in this paper, since the number
of unknowns involved in microstrip antenna analysis is very small.
Moreover, in the PMCHWT method, each interface must be meshed
in a stratified medium situation, leading to a significant increase in
the number of unknowns. Furthermore, the VSIE method has the
flexibility and capability of handling inhomogeneous and anisotropic
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material [26]. Finally, since the free-space Green’s function is used
in the VSIE method, it is much easier to be integrated with various
fast algorithms, such as the multilevel fast multipole algorithm [20].
On the other hand, we have also realized that once dielectric
substrate with high permittivity is involved, the convergence rate in
VSIE will be much slower than the PMCHWT method. However,
the basic antenna design principle tells us that high permittivity
dielectric is rarely employed in wideband antenna designs, since high
permittivity dielectric material will increase the antenna Q-value
greatly, and eventually limited the operating bandwidth. Considering
the advantages and limitations of the two methods, we will not use
the PMCHWT method for wideband microstrip antenna analysis,
since wideband stacked microstrip antennas and microstrip antennas
fabricated on inhomogeneous and anisotropic material are widely used
in modern communication systems.

Independent of the type of integral equation we used, the major
limitation of MoM is always being the long CPU time required for the
impedance matrix computation, since it will consume a considerable
portion of the total solution time [12]. This limitation becomes more
serious in the volume-surface integral equation approach, due to the
fact that the volume occupied by the dielectric material is also meshed,
and the number of unknowns is increased significantly. Therefore, if
the frequency response of any parameter over a wide frequency band
is required, one has to repeat the impedance matrix filling at each
frequency sample point, and the MoM would be rather time consuming.

One promising approach to speed up the impedance matrix
filling is the impedance matrix interpolation technique [12, 27–
33]. Various interpolation techniques such as the quadratic
polynomial interpolation [12, 27–29], Hermite interpolation [30],
Lagrange interpolation [31], and their improved versions are introduced
briefly and commented reasonably in [32]. In this paper, the accurate
and efficient interpolation technique in [32] is extended to the VSIE
formulations for the fast analysis of microstrip antennas.

The rest of this paper proceeds as follows. Formulations of the
interpolation scheme in VSIE are presented in Section 2, where the
modified matrix elements and their first derivative will be derived. To
keep the integrity of the paper, the cubic polynomial interpolation
technique with first order derivative coefficient is also presented. In
Section 3, numerical results for probe fed rectangular patch antennas
and a broadband U-slot patch antenna are compared with those
of the exact MoM solutions. Measured data and FEM solutions
obtained from the commercial software Ansoft HFSS are also provided
for comparison. Finally, the interpolation bandwidth is illustrated
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by considering the scattering from a coated PEC sphere in a wide
frequency band. Conclusions are given in Section 4.

2. FORMULATIONS

2.1. Formulations for the Volume-Surface Integral Equation

The general configuration of a microstrip antenna is shown in Fig. 1.
It consists of a radiating patch fed with a coaxial probe, a finite
dielectric substrate, and a finite ground plane. For simplicity, it is
assumed that the dielectric material for the substrate has piece-wise
continuous relative permittivity εr and permeability µ = µ0, although
this assumption is not necessary for the VSIE method. The metal-
dielectric composite object shown in Fig. 1 contains the dielectric
volume V and perfect conducting surface S = Spatch +Sground +Sprobe,
where Spatch, Sground, and Sprobe are the surfaces of the patch, ground
plane, and probe, respectively. By the equivalence principle, the total
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r )
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Figure 1. Configuration of a rectangular patch antenna (Antenna
#1).
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where
⇀
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r ) is the total field in the dielectric volume,
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scattered field in the dielectric volume due to the sources
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The boundary condition on the PEC surface S requires that the

tangential component of the total electric field vanishes on the surface.
Thus, the following surface integral equation can be obtained
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where the subscript ‘tan’ represents the tangential component of the
vector.

The total electric field
⇀

E(⇀
r ) in the dielectric volume is related to

the induced volume current by
⇀
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r ) = iωε0 (1− εr)
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By substituting (3) into the electric field volume integral equation,
we can observe that the unknown currents

⇀

JS and
⇀

JV are what we will
solve in the metal-dielectric composite problem.

The scattering field contributed from the surface current and
volume current can be determined by (4) and (5), respectively [34],
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To solve the integral Equations (1) and (2) by the MoM, the
entire structure should be meshed into small cells. In our simulation,
the PEC surface is meshed into curvilinear triangle patches, and the
same order curvilinear-faced tetrahedron cell is used to mesh the
dielectric volume [6, 35]. The combination of triangle-tetrahedron mesh
has great flexibility in the approximation of arbitrary shaped surface
and volume. Next, the curvilinear Rao-Wilton-Glisson (CRWG) basis
function is used to expand the surface current [36]. The 3D CRWG
basis function defined over adjacent tetrahedrons is applied to expand
the volume unknown iω

⇀

D(⇀
r ) [6]. The volume unknown selected here is



306 Chen et al.

to ensure the continuity of the normal electric flux density
⇀

D(⇀
r ) across

a dielectric interface. Therefore, the surface and volume currents can
be expressed as the superposition of the basis functions, respectively
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where αs
n and αv

n stand for the expansion coefficients for the surface
and volume current, respectively; Ns and Nv are the number of surface
and volume basis functions, respectively. By substituting (6) and
(7) into the two integral Equations (1) and (2), and applying the
resultant equations by Galerkin’s method, a set of linear equations
can be obtained [
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where the block matrix ZΩΘ, Ω, Θ ∈ {S, V } contains the elements

resulted from the testing of basis function
⇀

f
Θ
(⇀
r ) with
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f
Ω
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r ); V S

and V V are the excitation vectors corresponding to the surface and
volume basis functions, respectively. By applying the vector identity,
the divergence theory and the properties of the basis functions,
formulations of the elements in the block matrices can be reduced
to more compact forms. Formulations for the elements in the block
matrices are presented in the Appendix A. Elements in the right hand
side of (8) are also provided in the Appendix A.

2.2. The Modified Impedance Matrix

The matrix elements described in (A1)–(A4) represent the self-
coupling and mutual coupling between the PEC surface and dielectric
material, and they can be evaluated by numerical integration scheme
directly. However, significant computational effort is required to fill
the impedance matrix, especially in those highly frequency dependent
problems, where frequency sweeps with fine increments are necessary
to get accurate frequency responses.

On the other hand, the element formulations in (A1)–(A4) reveal
that the frequency variations of all the impedance matrix elements are
dominated by the phase term eik0R, where R =

∣∣∣⇀
r − ⇀

r
′∣∣∣. When the

observation ⇀
r and source ⇀

r
′

are close to each other, R is small and
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eik0R varies slowly with frequency. When they are far from each other,
the corresponding element fluctuates more rapidly as a function of the
frequency. It can also be noted from (A1)–(A4) that if the phase term
is factored out according to the distance R, each type of matrix element
contains two frequency dependent terms: one is the linear term with
k0, and the other is the inverse term with coefficient 1/k0. For this
reason, the following modified matrix elements are developed for the
VSIE approach

Z̃ΩΘ
mn =

{
ZΩΘ

mnfre
−i2πfrRmn/λh , Ωm ∩Θn = 0

ZΩΘ
mnfr, Ωm ∩Θn 6= 0

, Ω, Θ ∈ {S, V } (9)

where fr = f0/fh is the normalized frequency, and it varies in the
range [fl/fh,1], λh is the free space wavelength at fh; [fl, fh] defines the
frequency band of interest, and f0 is the frequency sample in this range.
The term e−i2πfrRmn/λh is multiplied to extract the domain phase term
in the Green’s function, where Rmn is the distance between centers of
the meshed elements Ωm and Θn. Therefore, only the remaining phase
term ei2πfr/λh(R−Rmn) exists in the matrix elements, and it fluctuates
slowly with the frequency. The matrix elements in (9) are multiplied
with fr, therefore, the linear term in ZΩΘ

mn is converted to a quadratic
term in Z̃ΩΘ

mn , and the inverse term in ZΩΘ
mn is converted to a frequency

independent term.
As can be seen from (9), the domain phase term is extracted

according to the physical layouts of the basis functions. Therefore,
the criterion designed to determine whether one basis functions is the
neighbor of another will dominate the accuracy, and it is essential
to design a reasonable criterion. For the elements in block matrices
ZSS and ZV V , the definition of the “neighboring elements” is the
same as that in [32]. If the elements supporting the test function
m and basis function n have at least one common element, we define
Ωm ∩ Θn 6= 0; otherwise Ωm ∩ Θn = 0. However, the “neighboring
elements” definition will be quite different for the elements in ZSV

and ZV S , since the CRWG and 3D CRWG basis functions are defined
over different types of cells. Supposing that the surface elements S±m
and volume elements V ±

n are the elements corresponding to the test
and basis functions in ZSV

mn , respectively, if there is at least one common
triangle elements between the curvilinear triangles S±m and the faces of
the tetrahedrons V ±

n , we define Ωm ∩Θn 6= 0; otherwise Ωm ∩Θn = 0.
The definition of the “neighboring elements” for ZV S is similar to that
for ZSV . The only difference is that the test and basis functions in ZV S

are defined over volume and surface elements, respectively. Based on
these definitions, the domain phase terms in the four block matrices
can be effectively extracted.
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2.3. The Interpolation Scheme

Besides the remaining phase term, all the modified matrix elements in
(A1)–(A4) only contain the quadratic terms, thus quadratic polynomial
based interpolation methods may be suitable for the interpolating
of the modified matrices at any frequency samples. However, the
remaining phase term ei2πfr/λh(R−Rmn) retained in the modified matrix
elements still varies with frequency, and it will weaken any quadratic
polynomial based interpolation methods to some extent. Therefore,
cubic polynomial based interpolation methods would produce more
accurate results. For the integrity of this paper, the new interpolation
method based on cubic polynomial employed in [32], which was proved
to be more accurate than the Hermite interpolation scheme and
Lagrange scheme, is introduced briefly in the following.

It is convenient to introduce the following variations: let x0, x1,
x2, and x represent the normalized frequencies fl/fh, fin/fh, fh/fh,
and fr, respectively, where fin is the internal frequency in [fl, fh];
g(xi) denotes the modified matrix elements at xi, i = 1, 2, 3; g′(x1)
is the first order derivative of g(x1), with respect to the normalized
frequency.

The novel interpolation method in [32] begins by evaluating the
modified matrices at three frequency samples fl, fin, and fh directly as
in the MoM. Moreover, the first order derivative of the modified matrix
at fin should also be computed before interpolation. The first order
derivative of the modified matrix in VSIE is presented in the Appendix
A. The modified matrix for any normalized intermediate frequencies
fr is then approximated by a cubic polynomial

g(x) = g(x0)φ0(x) + g(x1)φ1(x) + g(x2)φ2(x) + g′(x1)ξ1(x) (10)
where the polynomials associated with coefficients g(xi), i = 1, 2, 3 and
g′(x1) can be easily obtained by matching the boundary conditions at
x0, x1, and x2

φ0(x) =
x− x2

x0 − x2

(
x− x1

x0 − x1

)2

(11)

φ1(x) =
x− x0

x1 − x0
· x− x2

x1 − x2

(
1− x− x1

x1 − x0
− x− x1

x1 − x2

)
(12)

φ2(x) =
x− x0

x2 − x0

(
x− x1

x2 − x1

)2

(13)

ξ1(x) = (x− x1)
x− x0

x1 − x0
· x− x2

x1 − x2
. (14)

Once the modified matrix at any normalized intermediate
frequency fr is evaluated efficiently using the approximate formulation
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in (10), the impedance matrix at the corresponding frequency f0 =
fr × fh can be easily calculated according to the inverse process of (9)

ZΩΘ
mn =





Z̃ΩΘ
mnei2πfrRmn/λh

/
fr, Ωm ∩Θn = 0

Z̃ΩΘ
mn

/
fr, Ωm ∩Θn 6= 0

. (15)

Since all the computational intensive integrations in (A1)–(A4) are
replaced by a simple algebraic operation in (10), the filling time for the
impedance matrix at any frequency sample of interest is significantly
reduced. However, it is necessary to point out that the reduction in
CPU time is at the cost of increased storage memory, since all the
modified impedance matrices at fl, fin, fh and the first order derivative
of the modified impedance matrix at fin need to be stored. For
electrical large problems, special storage techniques introduced in [37]
can be employed to alleviate the large memory requirement.

3. NUMERICAL RESULTS

In this section, numerical examples will be presented to show the
capability of the proposed method. Specifically, the method is applied
to a broadband U-slot patch antenna and two rectangular patch
antennas in the first subsection. These antennas were chosen since they
possess different substrate thickness and different resonant characters.
In the second subsection, numerical results will be presented to
illustrate the efficiency and interpolation bandwidth. Accuracy of the
present method will be further validated from different aspects. In the
numerical examples presented below, the internal frequency is always
chosen to be the center frequency of the band, since the VSIEs in
(1) and (2) are typical electric field integral equations (EFIE). The
generalized minimal residual method (GMRES) is taken as the matrix
solver throughout this paper, and a block diagonal preconditioning is
involved to accelerate the convergence rate.

3.1. Applications in Microstrip Antenna Analysis

In the first example, a rectangular patch antenna printed on a finite
size dielectric substrate is considered. Fig. 1 shows the configuration
of the patch antenna (referred as Antenna #1), which is composed
of a probe fed rectangular patch fabricated on a grounded substrate
(εr = 2.33, h = 1.57mm, and tan δ = 0.01). An extended voltage
gap feed with four feeding edges around the probe is employed to
represent the excitation [38, 39]. In this feed model, two CRWG basis
functions that share the same ‘minus’ curvilinear triangle element (on
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the feed column) are defined across each of the feeding edges for the
introduction of infinitesimally thin voltage gaps. The ‘plus’ curvilinear
triangle elements of the two special CRWG basis functions are the
one meshed from the ground plane and bottom of the feed column,
respectively. This kind of special CRWG basis functions are also
defined at the junction of the feed column and radiating patch. As
compared to the simple voltage gap feed model, the extended one has
the advantage that the feed structure in real-world is well described
in the MoM meshes, and the electrical current at the feed point is
supported by totally eight basis functions, thus the resultant input
impedance would be more accurate than that from the simple voltage
gap feed model [39]. In this paper, the extended voltage gap feed model
is employed throughout all the probe fed microstrip antennas.

In Fig. 2, frequency response of the input impedance calculated
using the present method is compared with the HFSS FEM simulation
results and those calculated using traditional MoM. The HFSS FEM
and traditional MoM simulation results are referred to as “FEM” and
“Exact MoM”, respectively. Since the efficiency of the impedance
matrix filling is significantly improved in the interpolation method,
a fine frequency increment of 5 MHz is considered for the interpolation
method, while a large frequency step of 25 MHz is considered in the
FEM and exact MoM results. Although the number of frequency
samples is different among the three methods, one can still see the
reasonable agreement in Fig. 2, in terms of both the real and imaginary
parts of the input impedance. Fig. 3 presents the co-polar and cross-
polar directivity patterns in the E-plane and H-plane at 2.35 GHz,
good agreement is observed between the co-polar patterns calculated

Figure 2. Simulated input impedances of Antenna #1 using the
interpolation method, exact MoM and HFSS FEM.
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by the interpolation method and HFSS. However, the discrepancy in
the cross-polar patterns is relatively high, although the cross-polar level
has been well predicted by the interpolation method. This is mainly
due to the fact that both of the cross-polar levels in the E-plane and H-
plane are below −30 dB, which are so low that they are more sensitive
to various numerical errors.

In the second example, a rectangular patch antenna with thicker
substrate is considered. Fig. 4 shows the configuration of this
antenna (referred as Antenna #2). Again, the input impedances over
a frequency band are compared. It can be seen from Fig. 5 that the
results are also close to each other, although the internal frequency of
300MHz is far away from the highly frequency dependent range 200–
240MHz. Fig. 6 compares the directivity patterns obtained from the
interpolation method and HFSS FEM at 260MHz. Unlike the case
in Antenna #1, good agreement is observed, both in the co-polar and

(a) (b)

Figure 3. Comparison of the directivity patterns of the co-polar and
cross-polar fields for Antenna #1. (a) E-plane; (b) H-plane.

Figure 4. Configuration of a rectangular patch antenna with thicker
substrate (Antenna #2).
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Figure 5. Simulated input impedance of Antenna #2 using the
interpolation method, exact MoM and HFSS FEM.

(a) (b)

Figure 6. Comparison of the directivity patterns of the co-polar and
cross-polar fields for Antenna #2. (a) E-plane; (b) H-plane.

cross-polar patterns. The good agreement in the cross-polar patterns
is mainly due to the fact that the cross-polarization is relatively high.

Finally, we consider the application of the interpolation method
in the analysis of a broadband U-slot rectangular patch antenna as
shown in Fig. 7 (referred as Antenna #3), where there are totally
65 frequency samples considered. Both the measured and calculated
input impedance and radiation patterns are available in published
papers [40, 41]. It is interesting to note that the ground plane is
larger than the substrate, which will improve the front-to-back ratio.
Figs. 8(a) and (b) plot the input impedances in the Smith Chart
and the reflection coefficient over the frequency band of 2.4–4.0 GHz,
respectively. The input impedance agrees well with those calculated
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Figure 7. Configuration of the broadband U-slot rectangular patch
antenna (Antenna #3).

(a) (b)

Figure 8. Input impedance and reflection coefficient of Antenna #3.
(a) Input impedance in the Smith Chart; (b) reflection coefficient.

and measured in [40, 41], especially within the operating frequency
band (S11 < −10 dB). The reflection coefficient illustrates that the
lower cutoff frequency, center frequency, and upper cutoff frequency of
Antenna #3 locate at 2.72 GHz, 3.14 GHz, and 3.56GHz, respectively,
which are the same as those obtained from the finite-difference time-
domain (FDTD) simulations [40]. Therefore, both the accuracy and
effectiveness of the interpolation method and the extended feed model
are further validated.
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Figure 9. Directivity patterns of the co-polar and cross-polar fields
for Antenna #3.

Figure 9 shows the co-polar and cross-polar directivity patterns at
2.68GHz, where the cross-polar patterns have not been given in [40]
and [41]. It can be clearly observed that the co-polar pattern in E-plane
agrees very well with the measured data in [40] and calculated data
in [41], which indicates that the pattern in the E-plane calculated by
FDTD is inaccurate. For the co-polar pattern in H-plane, our results
agree well with those calculated in [40, 41], which further demonstrate
the claims in [41] that the measured data in the H-plane is not very
accurate.

3.2. Performance of the Interpolation Method in VSIE

Firstly, efficiency of the interpolation method is verified by comparing
the impedance matrix filling time with that using the conventional
numerical integration method. Table 1 lists the unknowns,
impedance matrix filling time of the numerical integration method and
interpolation method in the examples presented in Section 3.1. The
time denoted as “Computed Directly” is the impedance matrix filling
time for a single frequency point when using the conventional numerical
integration method, according to the formulations presented in (A1)–
(A4). The time denoted as “interpolation” is the impedance matrix
filling time for a single frequency point when using the interpolation
method, according to the formulations presented in (10) and (15). As
can be seen, the impedance matrix filling time of the interpolation
method is at least 21 times less than that in the conventional MoM.
The only cost in the interpolation method is the time consumed in
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Table 1. Impedance matrix filling time in the interpolation method
and direct MoM.

Antenna #1 Antenna #2 Antenna #3
Number of Unknowns 5710 3114 4797
Computed Directly (Sec.) 1293 421 692
Interpolation (Sec.) 61 18 33

Table 2. Comparison of the impedance matrix elements with the
modified impedance matrix elements in a 10 : 1 bandwidth.

40MHz 400MHz
ZSS

00 −1167.05 + 6.5600e− 06i −116.643 + 0.0006655i
Z̃SS

00 −93.3641 + 5.2480e− 07i −93.3145 + 0.0005324i
ZSV

0,307 0.22767 + 4.47807e− 6i 0.024321 + 0.000434i
Z̃SV

0,307 0.0182001− 0.000702i 0.0181596− 0.006994i

(a) (b)

Figure 10. Error norms of the interpolated impedance matrices for
the antenna simulations. (a) Antenna #1 and #3; (b) Antenna #2.

the calculation of the derivative of the modified matrix elements at
the internal frequency. However, when parameters at a large number
of frequency points need to be calculated accurately, the time cost
in the present method is negligible, thus the total time saved in the
interpolation method is considerable.

Secondly, accuracy of the method is confirmed by examining
the values of the impedance matrix elements and their modified
correspondences. The investigation is carried out based on Antenna
#2. Table 2 displays the values of two matrix elements at 40MHz
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and 400 MHz, one is the self-impedance element formed by testing
a surface basis function with the same surface basis function, and
the other is the interact-impedance element formed by testing the
surface basis function with a volume basis function. It can be
observed that by factoring out the domain phase term and multiplying
the normalized frequency, the modified matrix elements are almost
frequency independent in a 10 : 1 bandwidth, while the matrix
elements fluctuate more rapidly as functions of the frequency. The
good property of the modified matrix elements will guarantee the
accuracy of the interpolation method. The accuracy can be revealed by
investigating the error norms. As can be seen from Fig. 10, although
the volume terms are considered in the integral equation, the error
norms of the interpolated impedance matrices are comparable to the
case in SIE [32]. Specifically, the error norm will be rather small when
the interpolated frequency band is very narrow, such as the case in
Antenna #1. The error norms in Fig. 10 also illustrate the rationality
of the “neighboring elements” definitions in Section 2.2. Furthermore,
the error norms in the VSIE formulations are as small as those in

Figure 11. Bistatic RCS of a coated sphere at four interpolated
frequency sample points.
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the SIE, which demonstrates that if the domain phase term could be
extracted effectively (or the definition of the neighboring elements is
reasonable), the new interpolation scheme is independent of the basis
functions.

Finally, to demonstrate the capability of the interpolation method
in a wider frequency band, the bistatic radar cross section (RCS) of a
coated sphere over a 10 : 1 bandwidth is considered. The conducting
sphere has a radius of 0.3m, and a homogeneous coating with a
thickness of 0.05 m is around the core. The dielectric permittivity of the
coating material is εr = 4.0+0.01i. In the interpolation method, fl, fin,
and fh are chose to be 30 MHz, 160 MHz, and 300 MHz, respectively.
The bistatic RCS at four frequency samples, i.e., f0 = 75 MHz,
150MHz, 225MHz, and 270 MHz, are compared with those calculated
directly from MoM in Fig. 11. Excellent agreement between the results
of the two methods is found, which demonstrates that the present
method can be applied to a 10 : 1 bandwidth with high accuracy.

4. CONCLUSION

In this paper, an accurate analysis approach is developed to solve
metal-dielectric composite radiation problems, using an extended
impedance matrix interpolation technique. The contribution of
this work is twofold. Firstly, the accurate impedance matrix
interpolation technique proposed in [32] is extended to VSIE.
Specifically, formulations of modified matrix and its first derivative in
VSIE are derived, and an effective neighboring elements definition has
been given. Secondly, the extended method is applied to the analysis
of various microstrip antennas, in which fine frequency increment
is generally necessary because they are highly frequency dependent.
Great potential of the method would be found in the analysis of
impulse antennas designed for the radiation of ultra-wideband (UWB)
electromagnetic pulses, since responses over large number of frequency
points are necessary for the getting of time domain responses. Besides,
the accuracy, efficiency and the capability of the interpolation in wide
bandwidth are also investigated by comparing the numerical results
with measured data, exact MoM solutions, FEM solutions and FDTD
solutions. Numerical results show that the proposed method is suitable
for the analysis of wideband metal-dielectric composite problems with
high accuracy.
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APPENDIX A.

As stated in Section 2.1, by substituting Equations (4)–(7) into the
coupled VSIEs (1) and (2), and applying the resultant equations by
the Galerkin’s method, a set of Ns+Nv linear equations are obtained in
(8). By reorganizing the expressions of the impedance matrix elements
using the vector identity, the divergence theory and properties of basis
functions, the following elements in the block matrices can be obtained
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′∣∣∣ is the scalar Green’s function in

free space, k0 is the wave number at the frequency f0in free space, χ±
is the contrast ratio at each side of the common surface, n̂ and n̂′ are
the unit normal vector point from ‘plus’ elements to ‘minus’ elements;
the integral domain with subscripts ‘m’ and ‘n’ are the supports of the
testing and basis functions, respectively; the integral domain Sm and
Sn stand for the closed surfaces on which ‘half’ volume basis functions
are defined.

The corresponding elements in the excitation vectors are given by
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The cubic polynomial based interpolation method introduced in
Section 2.3 requires the first order derivative of the modified matrix
elements. It is easy to get the general form of the first order derivative
with respect to fr in the following two cases
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It is observed that once the first order derivative of ZΩΘ
mnfr is

obtainable, derivatives of the modified matrix elements in the two cases
can be easily evaluated. Since ZΩΘ

mnfr is continuously differentiable
with respect to fr, its first order derivative can be written as an explicit
expression. Formulations of the first order derivative of ZSS
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mn fr are presented in (A9)–(A12), respectively
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