Vol. 25
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-25
The Level Set Shape Reconstruction Algorithm Applied to 2D PEC Targets Hidden Behind a Wall
By
Progress In Electromagnetics Research B, Vol. 25, 131-154, 2010
Abstract
The level set algorithm is extended to handle the reconstruction of the shape and location of objects hidden behind a dielectric wall. The Green's function of stratified media is used to modify the method of moments and the surface integral equation forward solver. Due to the oscillatory nature of the Sommerfeld integrals, the stationary phase approximation is implemented here to achieve fast and accurate reconstruction results, especially when the targets are located adequately far from the wall. Transverse Magnetic (TM) plane waves are employed for excitation with limited view for transmitting and receiving the waves in the far field at one side of the wall. The results show the capability of the level set method for retrieving the shape and location of multiple 2D PEC objects of arbitrary shapes even when there are located at a small distance from the wall. To reduce the computational expenses of the algorithm in the case of multiple hidden objects, the MPI parallelization technique is implemented leading to a reduction in the CPU time from hours on a single processor to few minutes using 128 processors on the NCSA Supercomputer Center.
Citation
Mohammad Reza Hajihashemi, and Magda El-Shenawee, "The Level Set Shape Reconstruction Algorithm Applied to 2D PEC Targets Hidden Behind a Wall," Progress In Electromagnetics Research B, Vol. 25, 131-154, 2010.
doi:10.2528/PIERB10072612
References

1. Lu, T., K. Agarwal, Y. Zhong, and X. Chen, "Through-wall imaging: Application of subspace-based optimization method," Progress In Electromagnetics Research, Vol. 102, 351-366, 2010.
doi:10.2528/PIER10020903

2. Maaref, N., P. Millot, X. Ferrières, C. Pichot, and O. Picon, "Electromagnetic imaging method based on time reversal processing applied to through-the-wall target localization," Progress In Electromagnetics Research M, Vol. 1, 59-67, 2008.
doi:10.2528/PIERM08013002

3. Soldovieri, F., R. Solimene, and R. Pierri, "A simple strategy to detect changes in through the wall imaging," Progress In Electromagnetics Research M, Vol. 7, 1-13, 2009.
doi:10.2528/PIERM09030902

4. Rekanos, I. T. and A. Räisänen, "Microwave imaging in the time domain of buried multiple scatterers by using an FDTD-based optimization technique," IEEE Transactions on Magnetics, Vol. 39, No. 3, 1381-1384, May 2003.
doi:10.1109/TMAG.2003.810526

5. Travassos, X. L., D. A. G. Vieira, N. Ida, C. Vollaire, and A. Nicolas, "Inverse algorithms for the GPR assessment of concrete structures," IEEE Transactions on Magnetics, Vol. 44, No. 6, 994-997, June 2008.
doi:10.1109/TMAG.2007.916661

6. Borek, S. E., "An overview of through the wall surveillance for homeland security," Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop (AIPR05), 2005.

7. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geo. and Rem. Sens. Letters, Vol. 4, No. 4, 513-517, October 2007.
doi:10.1109/LGRS.2007.900735

8. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 6, 1589-1599, June 2008.
doi:10.1109/TGRS.2008.916212

9. Hantscher, S., A. Reisenzahn, and C. G. Diskus, "Through-wall imaging with a 3-D UWB SAR algorithm," IEEE Signal Processing Letters, Vol. 15, 269-272, 2008.
doi:10.1109/LSP.2008.917031

10. Song, L. P., C. Yu, and Q. H. Liu, "Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 12, December 2005.

11. Ahmad, F., Y. Zhang, and M. G. Amin, "Three-dimensional wideband beamforming for imaging through a single wall," IEEE Geo. and Rem. Sens. Letters, Vol. 5, No. 2, 176-179, April 2008.
doi:10.1109/LGRS.2008.915742

12. Pierri, R., G. Prisco, F. Soldovieri, and R. Solimene, "Three-dimensional through-wall imaging under ambiguous wall parameters," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1310-1317, May 2009.
doi:10.1109/TGRS.2009.2012698

13. Wang, G. and M. G. Amin, "Imaging through unknown walls using different standoff distances," IEEE Trans. Signal Process., Vol. 54, No. 10, 4015-4025, October 2006.
doi:10.1109/TSP.2006.879325

14. Debes, C., M. G. Amin, and A. M. Zoubir, "Target detection in single- and multiple-view through-the-wall radar imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1349-1361, May 2009.
doi:10.1109/TGRS.2009.2013460

15. Yacoub, H. and T. K. Sarkar, "A homomorphic approach for through-wall sens.," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1318-1327, May 2009.
doi:10.1109/TGRS.2009.2012866

16. Yoon, Y. S. and M. G. Amin, "Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 9, 3192-3208, September 2009.
doi:10.1109/TGRS.2009.2019728

17. Soldovieri, F., R. Solimene, and G. Prisco, "A multiarray tomographic approach for through-the wall imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, 1192-1199, April 2008.

18. Soldovieri, F., A. Brancaccio, G. Leone, and R. Pierri, "Shape reconstruction of perfectly conducting objects by multiview experimental data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 1, 65-71, January 2005.
doi:10.1109/TGRS.2004.839432

19. Catapano, L. and L. Crocco, "An imaging method for concealed targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1301-1309, May 2009.
doi:10.1109/TGRS.2008.2010773

20. Ramananjaona, C., M. Lambert, D. Lesselier, and J.-P. Zol'esio, "Shape reconstruction of buried obstacles by controlled evolution of a level set: from a min--max formulation to numerical experimentation," Inverse Problems, Vol. 17, 1087-1111, 2001.
doi:10.1088/0266-5611/17/4/335

21. Hajihashemi, M. R. and M. El-Shenawee, "TE versus TM for the shape reconstruction of 2-D PEC targets using the level-set algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 3, 1159-1168, March 2010.
doi:10.1109/TGRS.2009.2029698

22. Hajihashemi, M. R. and M. El-Shenawee, "High performance computing for the level-set reconstruction algorithm," Journal of Parallel and Distributed Computing, Vol. 70, No. 6, 671-679, June 2010.
doi:10.1016/j.jpdc.2009.10.001

23. Hajihashemi, M. R., Inverse scattering level set algorithm for retrieving the shape and location of multiple targets, Ph.D. Dissertation, University of Arkansas, 2010.

24. Hajihashemi, M. R. and M. El-Shenawee, "Shape reconstruction using the level set method for microwave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 92-96, 2008.
doi:10.1109/LAWP.2008.920464

25. Hassan, A. M., M. R. Hajihashemi, D. A. Woten, and M. El-Shenawee, "Drift de-noising of experimental TE measurements for imaging 2D PEC cylinders," IEEE Ant. and Wireless Propagation Letters, Vol. 8, 1218-1222, 2009.
doi:10.1109/LAWP.2009.2035341

26. Wait, J. R., Electromagnetic Waves in Stratified Media, IEEE Press, 1996.

27. Cui, T. J. and W. Wiesbeck, "TM wave scattering by multiple two-dimensional scatterers buried under one-dimensional multi-layered media," Proc. IEEE International Geo. and Rem. Sens. Symposium, 27-31, Lincoln, May 1996.

28. Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999.

29. Osher, S. J. and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, 2003.

30. Roger, A., "Reciprocity theorem applied to the computation of functional derivatives of the scattering matrix," Electromagnetics, Vol. 2, No. 1, 69-83, 1982.
doi:10.1080/02726348208915158

31. Chew, W. C., "A quick way to approximate a sommerfeld-weyl-type integral," IEEE Trans. on Antennas and Propagation, Vol. 36, No. 11, 1654-1657, November 2008.
doi:10.1109/8.9724

32. FEKO User's manual, Suite 5.3, July 2007.

33. Chew, W. C. and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 12, 439-441, December 1995.
doi:10.1109/75.481854

34. Aksun, M. I., "A robust approach for the derivation of closed-form Green's functions," IEEE Trans. Microwave Theory Tech., Vol. 44, 651-658, May 1996.
doi:10.1109/22.493917