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Abstract—The level set algorithm is extended to handle the
reconstruction of the shape and location of objects hidden behind
a dielectric wall. The Green’s function of stratified media is used
to modify the method of moments and the surface integral equation
forward solver. Due to the oscillatory nature of the Sommerfeld
integrals, the stationary phase approximation is implemented here to
achieve fast and accurate reconstruction results, especially when the
targets are located adequately far from the wall. Transverse Magnetic
(TM) plane waves are employed for excitation with limited view for
transmitting and receiving the waves in the far field at one side of
the wall. The results show the capability of the level set method
for retrieving the shape and location of multiple 2D PEC objects of
arbitrary shapes even when there are located at a small distance from
the wall. To reduce the computational expenses of the algorithm in
the case of multiple hidden objects, the MPI parallelization technique
is implemented leading to a reduction in the CPU time from hours on
a single processor to few minutes using 128 processors on the NCSA
Supercomputer Center.

1. INTRODUCTION

The electromagnetic waves have the ability to penetrate through
nonmetallic walls made of wood, glass, brick, and/or concrete blocks.
The reflected waves could be analyzed to reconstruct the profile and
the location of hidden objects behind these walls. The through-wall
imaging is challenging because of the complex multiple scattering
mechanisms that occur between the objects and the dielectric wall.
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Examples of applications include earthquake and fire rescue operations,
police search operations, homeland security, and military applications
as reported in several work in the literature [1-19]. The reported
results in [1-17] were based on permittivity reconstruction of hidden
objects behind a wall, while works in [18-20] were focused on the shape
reconstruction of hidden objects.

In [1], a subspace-based optimization method was applied for
through-wall imaging. The target objects of different profiles were
well reconstructed even in the presence of high level of noise in the
data. In [2], a through-the-wall imaging technique based on time
reversal method was introduced for the detection of moving targets in
a cluttered environment. In [3], a simple procedure to detect changes
in a through-the-wall imaging scenario was reported validated against
synthetic and experimental data. In [4], a microwave imaging technique
that combined the FDTD method and the Polak-Ribiere algorithm for
reconstructing underground multiple scatterers was presented. In [5],
the characterization of inclusions in concrete structures using the
matched-filter-based reverse-time (MFBRT) migration algorithm and
the particle swarm optimization (PSO) was investigated.

Most of the accomplished works in this field were based on
synthetic aperture radar (SAR) and ultra-wideband (UWB) radar
techniques [8,9]. In [10], a 2-D contrast source inverse scattering
method was applied in a multilayered medium and a high-quality image
reconstruction was achieved using multi-frequency data with a limited
array view.

The Born approximation was employed for qualitative reconstruc-
tion of hidden 2-D objects behind the wall [7,17]. The algorithm was
tested using synthetic and experimental data; however, the method
was restricted to canonical scatterers. A synthetic aperture array tech-
nique was presented for imaging the targets behind the wall using ultra
wideband antennas and wide range of incidence angles [8]. A 3-D ultra
wideband SAR technique for surface reconstructing of hidden objects
using real data was implemented achieving a reduction in the calcula-
tion time [9].

Another 3-D through-the-wall beam former based on applying
a transformation to bring the target and the transmitter/receiver to
the same height was designed [11]. A two-step imaging procedure by
means of a linear inverse scattering technique was presented for imaging
the objects behind a wall whose parameters were not completely
known [12]. A wideband beam forming-based technique was proposed
to perform imaging with wall parameter ambiguities and different
standoff distances [13, 14]. The signature of a metallic target behind a
thick brick wall was obtained using low frequencies and a monostatic
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approach [15]. The application of spatial filters to suppress, or
drastically mitigate the wall reflections, was proposed in [16]. Some
work suggested estimating the wall parameters based on the model of
a dielectric slab and the early arrival time [12].

In [18], the Kirchhoff approximation was employed for shape
reconstruction of perfectly conducting objects when the scattering data
were collected in a finite region around the targets. The linear sampling
method was employed for the inverse problem of non-accessible targets
concealed into a wall or under a floor [19].

Most of the above works provided only the contrast of the hidden
object with respect to the background medium but did not provide
the shape of these targets. Although the current work assumes a
priort knowledge of the dielectric wall’s constitutive parameters and
thickness, which could be a realistic assumption in several applications,
the proposed level set algorithm provides the exact shape of the
hidden targets and also their locations. The level set inversion method
has shown a potential in shape reconstruction as reported in the
literature [20-24]. In a relevant work by Ramananjaona et al., the level
set technique was used for reconstructing the shape of 2-D obstacles
buried in a half-space of low dielectric material using both transverse
magnetic (TM) and transverse electric (TE) polarizations [20]. Most
of the reported results were restricted to monochromatic data and
rectangular shaped objects.

The level set is an implicit mathematical framework for the shape
reconstruction problems in electromagnetics, more in depth details
given in [20-29]. The numerical results demonstrate the capability
of the method for handling the topological changes (i.e., breaking and
merging of the region). A simple initial guess can evolve to several
objects during the reconstruction scheme.

The level set technique is implemented in this work to reconstruct
the location and the shape of multiple PEC objects of arbitrary shapes
hidden behind a known dielectric wall. The challenge in the current
work is the implementation of the Green’s function in stratified media
in the level set algorithm [26,27]. An approximation of the Green’s
function using the stationary phase method is implemented to reduce
the CPU time without much sacrificing of the accuracy.

The stationary phase method (saddle point method) is found to
be an effective approach for the fast calculation of the Sommerfeld
integrals in stratified media. The calculation time for the MoM
impedance matrix in stratified media is almost in the same order of
that in free space. The accuracy of the method is validated using
different examples shown in Section 2.4. The obtained reconstruction
results demonstrate the efficiency of the algorithm especially when the
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target objects are not placed too close to the wall.

Plane wave illumination of the wall with TM polarization indicates
that the electric field is parallel to the cylinders’ axes. Several multiple
scattering mechanisms contribute to the received waves such as the
scattering from the objects, the scattering from the dielectric wall,
and the multiple scattering between the objects and the wall as
discussed in Section 2. The constitutive parameters and the thickness
of the wall are assumed to be a priori known which allows the
offline calculation of their effect on the scattered waves. However,
the multiple scattering between the unknown objects and the wall
cannot a priori be predicted. In the case of inhomogeneous wall,
closed-form expressions to take into account the wall effect are not
generally available. In this case, numerical techniques such as finite
difference methods could be applicable. As reported in [12], there are
some statistical methods to deal with the through-the-wall imaging
under ambiguous wall parameters.

2. METHODOLOGY

2.1. Level Set Representation

We assume that the moving contour I'(¢) is represented implicitly as
the zero level of a two-dimensional function ®(-), as shown in the two
dimensional configuration (2-D) in Fig. 1. At each time ¢, the interface
is represented as [28]:

I'(t) = {(z,y) |®(2,y,t) = 0} (1)

Upon obtaining the derivative of (1) with respect to the evolving
time ¢, we have the following expression for tracking the motion of the
interface known as the Hamilton-Jacobi equation [28,29]:

2 By, 1)+ F(E) [V, y,0) = 0 (20)
Oy = O(x,y,t =0) (2b)

where F'(-) is the normal component of the deformation velocity on
the contour (see Fig. 1). The objective here is to minimize the cost
function which is the mismatch error between the simulated scattered
far-field of the evolving objects during the inversion process and the
scattered far-field of the true object (data) [21]. The appropriate form
of the deformation velocity, making a decreasing cost function, was
given in [22]. It was based on the forward and adjoint currents induced
on the surface of the evolving objects [30].

The PDE in (2) is solved numerically using the higher order finite
difference schemes elaborated in [28]. If the value of the level set
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Figure 1. Implicit representation of the evolving contour using level
set.

function ® at any grid point (x;,y;), at any time nAt, is denoted
by the symbol @7, = O (x4, y;,nAt), the updated value of the level set
function at time (n + 1)At is calculated as follows [28]:

Ot = &f — At [max(Fy;,0)VF + min(F;;,0)V~] (3a)

where Fj; = F(x;,y;) represents the velocity function at (z;,y;). The
symbols VT and V™~ are given as follows [28]:

_ _ 1/2
V+:<maX(ij7, 0) —l—min(ijJ“, 0)+max(Dj;",0) —l—mln(DE’jJr, 0)) (3b)

1/2
v—:(min(Dg;.—, 0)+max(D%F, 0)+min(DY", 0)+ max(DY;, 0)> (3¢)

The directional derivatives of the level set functions in (3) are
calculated, for example, as follows:

DYt = 3d
: N (34)
_ ®(wi,yy) — ®(w; — Az, yy)
D*¥ =
- Az (3e)

The function ®¢(-) is the signed distance function, shortest
distance between a grid point and the contour, corresponding to
the initial guess. The choice of the signed distance function avoids
steep gradients and rapidly changing features during the inversion
algorithm [29]. The time step required for solving the PDE given in (1)
is chosen according to the Courant-Friedrichs-Lewy (CFL) stability
condition which asserts that the numerical wave should propagate
at least as fast as the physical waves [28,29]. The level set shape
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reconstruction algorithm in the stratified media is similar to that of the
free space reported in [21] except that the forward scattering problem
is more computationally demanding in the stratified media due to
the need to numerically evaluate the Sommerfeld integration. The
modified forward scattering problem and the choice of the deformation
velocity are discussed as follows.

2.2. Forward Scattering Problem in a Stratified Media

This work is based on the configuration of Fig. 2 where a known
homogenous dielectric wall with the relative permittivity e, and
conductivity o is located at —h < z < 0 in the x-y plane.

A time-varying line source carrying a current I = 1 A with angular
frequency w = 27 f is located at (2/,y’) in the half space 2 > 0 parallel
to the z-axis. The electric field, which is the Green’s function of the
stratified media, at any point (z,y) in & > 0 region is produced as
follows, assuming time convention of e/** [26, 27]:

Arj) oo ul(§)
wMOH(Q) (k: Ve —a)?+ (y - @/’)2)

LL,MO/+O<>€ 3€(y—y')
dmj u(§)

Gz 2y )= (e*“(5)|1*90/\+ R*(k(),g)efu(ﬁ)(zﬂc’))dg

R~ (ko, §)e O de (4a)
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Figure 2. Configuration of hidden objects behind a dielectric wall.
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where u(€) = /&2 — k3 is the phase factor and Héz) (+) is the zero order
Hankel’s function of the second kind. The symbol kg represents the
free space wave number. The symbol of ¢ represents the permittivity
of the free space and the symbol of pg represents the permeability of
the free space. The term R~ (ko,&), the wall reflection coefficient at
x > 0, is given by [26]:

(urus — u3) sinh(uzh)
ug(uy + ug) cosh(ugh) + (U1U3 + u%) sinh(uzh)
with u = uz = /&2 — k} and uy = /€2 — k3é,. The symbol &, is the

effective dielectric permittivity of the dielectric wall with thickness A
given by [26]

R (ko, &) = (4b)

(5)

In this work, we assume that multiple perfectly electric conducting
(PEC) infinite cylinders with arbitrary cross-sections and total contour
C (that represents the contours of all objects) are located in the half
space x > 0. The induced current on the surface of the conducting
cylinders has only the z-component J"?(z’,y'). Upon enforcing the
boundary condition for the total electric field to vanish on the surface
of the PEC objects, the following integral equation is obtained to
be solved for the induced current using the Method of Moments
(MoM) [27].

Er = Ep + —
JWweo

/J;"d (xljy') G (:c,y; x/,y/) dl' = —Ei(x,y) (6)
(&
where G(x,y; 2’,y) is the Green’s function in the stratified media given

by (4a) and E!(x,y) is the transmitted incident electric field at any
point (x,y) € C given by [27]:

El(z,y) = T (ko, ko sin 0;)e~IFo(zcosbitysinbi) (7)
where T (kg, kosin6;) is the transmission coefficient through the
dielectric wall given by [26]:

Quq ugetth

ug(u1 + ug) cosh(ugh) + (uius + u3) sinh(ugh)

T (ko, &) = (8)

Upon calculating the induced current on the surface of conducting
cylinders, the scattered electric field due to the PEC objects,
E;fgt(a:r,yr), at any receiver point (z,,y,) at © < —h region is given
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by [27]:

wio ;
jfo(x,,,yr) = R szd (xlvy/)
c

T (ko €)e—F6wr—1)
/ (08(6@ et @hter=aDgeq  (9)

—0o0

where T~ (ko, &) is the transmission coefficient through the dielectric
wall given by [26]:
_ 2uius
T (ko,§&) =
(ko,€) ug(uy + ug) cosh(ugh) + (U1U3 + u%) sinh(ugh)
The total scattered field, which is due to the wall and the objects, in
(xr,yr) is given by [27]:

E;,Ctotal(xr’ yT) = Ej,cwall(xﬁ yT) + EE,CO('TT? yT) (11)
where E?¢

5¢ 1(@r, yr) is the scattered field from the dielectric wall in the
absence of the PEC objects and it is given by [26]

By (r, yr) = R (Ko, ko sin 9¢)ejk0(”3r cos 0 —yr sin6; ) (12)

where R (ko, kosin6;) is the reflection coefficient from the dielectric
wall given by [26]:

(10)

R*(ko, &) = R (ko,&)e*" (13)

The far field pattern of the scattered field from the objects
represented by Ef(-) will be used in the level set algorithm. Since
the constitutive parameters of the dielectric wall and its thickness are a
priori known, the contribution of the wall to the total scattered field is
Escl(z,,y,) for certain incident direction "¢ can be calculated offline
using (12). If the point receiver (z,,y,) is adequately far from the
dielectric wall (300 is assumed in this work), the far-field pattern
from objects, P;5(0°¢,0°) in the direction of §°° is calculated as

follows [21]: ‘ '
P25 (07,0°) = \/p P B (20, yr) (14)

where p = /aZ+4y2 and 0°¢ = tanfl(z—:) (see Fig. 2). The
deformation velocity F'(-) in (2) is the same as in [22] where the
conducting cylinders were immersed in free space with no walls. In
general, the formulation of the deformation velocity was obtained
upon minimizing the mismatch between the scattered far fields of the
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evolving objects and the true targets (defined as the cost function).
The expression of the deformation velocity F' is given in [22]:

M Ny (i) '
F(7) = —aRe|e~F (B, (07, 0120

z,81m ¥

B2 s (007, 0759 )) L (7). L(F) (15)

z,meas s Yig

where Ny is the number of incident waves, Nys(i) is the number of
measurements under the ith incidence, 6;"¢ is the ith incident angle,
077°% is the mth measurement angle for ;"¢ J.(7) is the induced

current solution of the forward problem and J.(7) is the induced
current solution of the adjoint problem [30]. The symbols EJ%; , and
E:neas represent the calculated and the measured scattered fields,
respectively, and « is a positive normalization coefficient.

The main constraint for the shape reconstruction of the objects
behind the wall is that the incident and scattered waves are limited to
certain views as shown in Fig. 2, unlike the free space configuration.

These constraints are given by:

s , s s 3

—— <M< d -<0°<— 16

2 97 M 3 2 (16)

The angles are measured with respect to the positive x-direction

as shown in Fig. 2. Therefore, it is challenging to retrieve the details
in parts of the targets where the illumination is not available similar

to the concept of shadowing.

2.3. Stationary Phase method

The calculation of the Sommerfeld integral in stratified media is
computationally challenging, but the stationary phase method is
employed to approximate the integration in (4a) [31]. The integrand
in (4a) has a rapidly oscillating behavior due to the exponential term
e~ 8=y —u@@+") while the reflection coefficient R~ (ko,&) has a
slowly varying behavior compared to the exponential part. Therefore,
the latter can be replaced by its value at the stationary point £ = &

where,
8‘1 [—jg (y—v) -k (z +m’)] =0= (17a)

§=&1

B ko(y — o)
§ - Vi +2)?+(y—y)? ()
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The second term in (4a) can be approximated as follows:
Lluo +oo e_jé(y_y/)
Arj Jooo  u(§)
+oo
+o0 J&y y) ]
—WHO
= — PR ko, €)Y’ (kow:c T (- y/)?) (18)

A Similar approach is employed to approximate the integral of (9).
The first step is to find the stationary point of the rapidly varying
exponential part as:

R~ (ko, §)€—U(£)($+x’)d§

22

0

3 — /& — kg (h+ap —a =0 19a
e |76 =) = e a3 )| =0= oo
£ = ko(yr — ¢') (19b)

Vh+z =22+ (yr —y')?
The slowly varying part in (9) can be replaced by its value at the
stationary point as follows:

400 ,
WHO [ 1ind eijg(yriy ) u(€)(h+z,—2") /
B (@0, yr J ko, &) | ——— ) dedl
“oleru) g3 [ 1T (ko) e ¢

=L O/JW YT (o, &) HS? (ko / (ot oy =224 (g, — /)2 )l (20)
C

The scattered field is calculated in the far field zone which
justifies the approximation in (19). Compared with other numerical
methods, the level-set algorithm based on the MoM provides more
efficient reconstruction results, since calculating the scattered fields
and the deformation velocity requires the calculation of the induced
currents only on the contour of the evolving objects. Furthermore the
deformation velocity is directly calculated on the moving contours and
then extended to the whole computational domain [21-25].

In most of the inverse scattering techniques, the scattered field in a
single frequency does not provide enough information for retrieving the
details of the target objects. In this work after a pre-assigned number
of iterations (e.g., 1000 iterations), the working frequency hops to a
higher one to retrieve finer details of the unknown objects [21].
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2.4. Validation of the Forward Solver

The accuracy of the forward solver in the stratified medium is
investigated using (i) the full Green’s function in (4a), (ii) the same
expression but with ignoring the second term in (4a), and (iii) using
the stationary phase method (19), (20). The validation is conducted
at different frequencies and different distances of the object from the
wall. The numerical results are compared with the commercial EM-
simulator FEKO [32].

In the first example, the scattered electric field due to a
circular PEC cylinder with a radius of r. = 20cm centered at
(x.,y.) = (50cm, 0) is shown in Fig. 3. Normal incidence is considered
0i"¢ = 0 at frequency of f = 1GHz. The thickness of the wall is
assumed 20 cm made of a material with e, = 2.2 and loss tangent
tand = 0.001. The point receivers are placed at xz,= —2m and
1m < y,< 1m. Fig. 4 shows the magnitude of the scattered electric
fields due to the objects EJ% (@, yr) (9) using the full Green’s function
(4a), the Green’s function upon ignoring the second term in (4a), the
stationary phase method (20), and FEKO. The results show that the
stationary phase method demonstrates very good agreement with using
both FEKO and the full Green’s function (4a). However, ignoring the
interaction between the dielectric wall and the object (i.e., ignoring
the second term in (4a)) causes an error of 3% compared to the full
Green’s function in this case.

As expected, the multiple scattering between the objects and the
wall, which is represented by the second term in (4a), increases as the
distance between the wall and the objects decreases. The phase results
show similar validation but are not presented here. Another validation
was conducted using the same circular PEC cylinder but when located
closer to the wall at (z,,y.) = (25cm,0) with the permittivity of the
wall e, = 4.5. In this case and compared with the results of Fig. 4, the

—— Stationary phase

\p

20+ —— FEKO
= [ —— Full Green's function
ﬁ, \Aa"-’ 0215 ~~~Ignoring R in (4a)
H
2 or A
>~ Er= 2.4

-10r4 tan(8) +0.001
20t h=20¢m

-20 0 20 40 60 80 s -05 0 05 1
X (cm) ()

Figure 3. Circular cylinder with  Figure 4. Scattered electric field
the radius of 20 cm. from the circular cylinder.
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error between using the full Green’s function and the stationary phase
method has increased to 4%; the error between using the full Green’s
function and FEKO has increased to 11%; and the error between using
the full Green’s function and the same expression but with ignoring
the R~ term in (4a) has increased to 25% (plots are not shown).

As observed in Fig. 10(d), if the target is placed close to the wall,
the reconstruction results are not very accurate; this is a common
problem in see through wall imaging. In this case, the assumption that
the source (wall) and the observation point (target) to be adequately
far from each other does not hold. Alternatively, other more time
consuming techniques, such as complex image method, could be
used [34].

The CPU time required when using the full Green’s function is
~ 38 min total, ~ 16 min when ignoring the second term in (4a), while
it is only 2 sec when using the stationary phase method. For FEKO,
the simulation of the structure of Fig. 3 required several hours since
it was modeled as a 3-D electromagnetic scattering problem. Based
on the above, the stationary phase method will be used in all results
of Section 4 for generating the synthetic data and for calculating the
scattered fields of the evolving objects during the inversion process.

3. NUMERICAL RESULTS

3.1. Reconstruction of Two Elliptical Cylinders

In the first case, the reconstruction of two elliptical PEC cylinders
located behind a lossless dielectric wall is examined. The thickness of
the wall is assumed h = 50 cm with the permittivity of ¢, = 2.2. The
semi-major and semi-minor axes lengths of the ellipises are a = 6 cm
and b = 2cm, respectively. The separation distance between the two
ellipses is 40 cm measured between their centers. The two ellipses are
located at (40cm, 20cm) and (40 cm, —20cm), respectively. In this
example, nineteen directions of the incident plane waves are used with
nineteen directions of the received waves per each incidence (16). A
step of 10deg. is used. This configuration results in 361 synthetic
data at each frequency. Six frequencies are used in the frequency
hopping scheme as 10 MHz, 200 MHz, 500 MHz, 1 GHz, 3 GHz and
5 GHz. The initial guess of the two unknowns is assumed a circular
cylinder of the radius of 7. = 10cm centered at (z.,y.) = (40cm,0)
(see Fig. 6(a)). The frequency hopping technique is combined with
the level set method to avoid dropping the algorithm in local minima
as explained in [21,33]. Lower frequencies of 10 MHz and 200 MHz
were employed at the beginning of the frequency hopping scheme to
find the targets’ locations, followed by relatively higher frequencies
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to retrieve the details of the objects. Notice the progress of the
reconstruction versus the frequency shown in Fig. 6. Notice also that
the computational domain should include the initial guess, the two
targets with adequate space for the evolving objects. In this work,
the computational domain is a square with the dimensions of 80cm
centered at (40 cm, 0).

Figure 5 shows the normalized cost function versus the inversion
iterations. The cost function is normalized with respect to the
synthetic data at each frequency. The expression of the cost function
is given as:

i
Ninc Nmeas

. . 2
sc mnc pmeas sc mc pmeas
z,sim(ei 701']' )_Ez,meas(ei 702']' ) ‘

) i=1 j=1
Cost function= :
Ni'rw N”}neas . 2
sc inc gmeas
Z Z Ez,meas(ei 791’]’ ) ‘
i=1 j=1
(21)

Due to the fact that the cost function at each frequency is not
normalized to the previous value, the plots in Fig. 5 show jumps once
the algorithm hops to a new frequency as discussed in [21-25]. The
results in Fig. 5 show that the algorithm converged after about 7000
iterations with residual error of 0.02. The observed fluctuations in
the cost function plot are not understood yet as they are noticed at
lower and higher frequencies; however, they do not affect the final
reconstructions. Fig. 6(a) shows the initial guess, Fig. 6(b) shows the
reconstruction after 3700 iterations at 500 MHz, and Fig. 6(c) shows
the reconstruction after 7000 iterations at 5 GHz. These results showed
the capability of the level set algorithm when the two ellipses were
located far from the wall.

14

g 12 500 MHz
A
=l
%08
3 1 GHz
E 06
A
E 04 3 GHz
o
=4
021 10 MHz 200 MHz 5GHz J
o e

0 1000 2000 3000 4000 5000 6000 7000
Iteration

Figure 5. Normalized cost function for reconstruction of two elliptical
cylinders (d = 40 cm).
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Based on our results in 2D cases [24], using the low frequency
of 10 MHz reduces the error between the simulated and measurement
data. The deformation velocity is well-behaved and points towards the
location of the target objects. A coarser discretization of the evolving
contours is used in the lowest frequency compared with the higher ones.
In free space case, the lowest frequency successfully helps retrieving
the unknown location of the target [24]. The main problem arises
due to the far-field criteria for collecting the measurement data in real
applications.

The second case uses the same data of Figs. 5, 6 but with
decreasing the distance to wall to d = 20cm instead of d = 40cm.
In this case, the two ellipses are located at (20 cm, 20 cm) and (20 cm,
—20 cm), respectively. The same initial guess of Fig. 6 is assumed here.
Fig. 7 shows the final reconstruction results. The cost function which
demonstrates the convergence of the algorithm in this case (not shown
here) is similar to that shown in Fig. 5.

To investigate the effect of the distance between the wall and the
two ellipses on the reconstruction results, the same data of Fig. 6 is
repeated except with more decrease of the distance to only d = 8 cm.
The same initial guess of Fig. 6 is used here. The final reconstruction

Iteration=0, Frequency= 10 MHz Iteration= 3700, Frequency=500 MHz
v i ! ! ! : : ! ! !
201 | 1 o 1 20! | ]
1 | I I
c 10 : : 1 s 10 : i
5 ofig =22 : { & ofi i Evolving
= : r | > I &= 22 ]
10y h=50cm ! nitial guess] 10 i
[ ] I h=50cm 1
201 1 ] [emm) ] -20; | i
1 | . . . 1 1 . y .
-40 -20 0 20 40 60 80 -40 -20 0 20 40 60 80
X (em) X{em)

(a) (b)

Iteration= 7000, Frequency=5 GHz

>
T Final
& & =22
-
- h=50cm
o>
-40 -20 1] 2I0 4b 6I0 80
X (em)
(©)

Figure 6. Reconstruction of two elliptical cylinders behind the
dielectric wall when (d = 40cm). (a) Initial guess, (b) after 3700
iterations, (c) after 7000 iterations.
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Figure 7. Reconstruction of two elliptical cylinders behind the
dielectric wall when (d = 20cm). (a) Initial guess, (b) after 3700
iterations, (c) after 7000 iterations.

results are shown in Fig. 8. In this case, the cost function (not shown
here) is similar to that shown in Fig. 5.

The results of Figs. 5-8 show that the level set reconstruction
algorithm successfully retrieved the two ellipses even when the distance
to the wall was 40 cm, 20cm, and 8cm. The CPU time required for
the above examples was ~ 40 minutes total. The SUN platform with
AMD Opteron (tm) Processor 850 of 2393 MHz and 8 GB of RAM was
used.

3.2. Reconstruction of a Defected Pipe

The reconstruction of a defected pipe hidden behind a wall is
investigated as shown in Figs. 9 and 10. The length of the crack is
2.8 cm with width of 3 cm as depicted in Fig. 10. The defect is located
on the surface of a circular pipe that has a radius of 10cm and it
is centered 60 cm away from the wall. The thickness of the wall is
assumed 20 cm made of dry concrete of permittivity €, = 4.5 and loss
tangent tan é = 0.0111. The total number of synthetic data used in this
example is the same with 19 incident and 19 scattering directions per
each incidence (16). The same initial guess of Fig. 6 is used here with
four different location of the defected pipe as shown in Figs. 10(a)—(d).
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Figure 8. Reconstruction of two elliptical cylinders behind the
dielectric wall when (d = 8cm). (a) Initial guess, (b) after 3700
iterations, (c) after 7000 iterations.
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Figure 9. Normalized cost function for reconstruction of the defected
pipe (d = 60 cm).

In this case, six frequencies are used in the frequency hopping

scheme as 10 MHz, 1 GHz, 3 GHz, 5GHz, 7GHz and 9GHz. The
normalized cost function is shown in Fig. 9 which clearly shows the
convergence of the algorithm after 9990 Iterations. The results in
Figs. 10(a)—(c) show satisfactory results of the defected pipe; however
Fig. 10(d) did not show a good reconstruction of the defect due to the
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increased multiple scattering with the wall at the reduced distance in
this case. The higher frequencies 5 GHz, 7 GHz and 9 GHz are needed
to retrieve the defect in the pipe as shown in Figs. 10(a)—(c), although
the transmission coefficient in the wall was reduced to 0.71, 0.63, 0.53,
respectively, at these frequencies when considering the wall alone.

The results show that as the distance to the wall decreases, the
reconstructed profile starts to deteriorate. In the last case, when the
crack is only 1cm away from the dielectric wall, it was not retrieved
successfully as shown in Fig. 10(d). This can be explained by the fact
that the multiple scattering between the wall and the object increases
leading to inaccurate calculations using the stationary phase method.
On the other hand, when the same defected pipe is placed in free
space, the defect was perfectly reconstructed as reported in [24] where
frequencies up to 15 GHz were used. The reconstruction time for the
cases of Fig. 10 was ~ 4 hours total on the same SUN platform.

It is known that inverting limited view data imposes a challenge
on the reconstruction accuracy. However, the level set has shown a
success in reconstructing the shape and location of targets using limited
view data compared with other methods such as the linear sampling
method [19, 23]. For example, in the reconstruction of a defected pipe
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Figure 10. Reconstruction of the defected pipe at different distances
from the wall. (a) d = 40cm, (b) d = 30cm, (c) d = 15cm,
(d) d =11cm.
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in free space when illumination was available at one direction, the level
set was successful in retrieving a partial profile of the defect [24].

3.3. Reconstruction of the Three Objects Using Noisy Data

In this example, the reconstruction of three objects of arbitrary cross-
sections is shown when noisy data was added. This example deals
with an unsymmetrical structure of the objects behind the wall. The
objects are rectangular cylinder, triangular cylinder, and elliptical
cylinder. The thickness of the wall is assumed 20 cm with permittivity
of e, = 9.0 and loss tangent tané = 0.0111. The same number of
data and the same initial guess are used here. Two different noise
levels are examined in this example with the signal to noise ratio

Erms
(SNR) SNR = 201log( EZZ;ZZZ)’ where EZ70  and E77S, represent the

root-mean-square of the signal and the Gaussian noise, respectively. A
fixed SNR is used at all frequencies which mean that the level of the
noise depends on the amplitude of the synthetic data which is changing
with frequency. In this case, nine frequencies are used in the frequency
hopping scheme as 10 MHz, 100 MHz, 200 MHz, 500 MHz, 750 MHz,
1GHz, 3 GHz, 5 GHz and 7 GHz.

As mentioned earlier, the lower frequencies helped to retrieve the
general profile of the targets while the higher frequencies helped to
reconstruct the details of the three objects. The normalized cost
function is shown in Fig. 11.

The reconstruction results of the three targets using noisy data
corresponding to SNR = 10dB are shown in Fig. 12(a), in Fig. 12(b)
after 6500 iterations at 200 MHz, and in Fig. 12(c) after 24000
iterations at 7 GHz showing the final reconstruction.
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e
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o
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o
i

Normalized cost function

o

0

0 4000 8000 12000 16000 20000 24000
Iteration

Figure 11. Normalized cost function for reconstruction of the three
objects (SNR = 10dB).
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Figure 12. Noisy data of SNR = 10dB. (a) Initial guess, after (b) 6500
iterations and (c) 24000 iterations.

Despite the noisy data and the limited view configuration of the
incident and scattering directions, the level set algorithm successfully
retrieves the three objects behind the wall with a single initial guess.
However since there is no illumination from the right side of the wall,
the reconstructed profile is a little bit distorted on that side. Due
to the more complex configuration in this example, larger number of
frequencies and iterations were needed compared with the previous
examples. The same case is repeated but when the data is more noisy
with SNR = 5dB. The results show less satisfactory reconstructed
shapes due to the higher level of noise (not presented here). The CPU
time was ~ 3 hours for 24000 iterations on the same SUN platform.

The number of employed frequencies is increased according to
the complexity of the targets objects. In the example of Fig. 11,
the number of frequencies is increased (9 frequencies) compared with
the earlier examples (6 Frequencies). However, using more frequencies
does not degrade the reconstructed profile but leads to increasing the
required CPU time. In general, the working frequency should jump
to a higher one, when the cost function drops in local minima and
no further details of the target is retrieved using the data at the
current frequency. In this work, a pre-assigned number of iterations
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(mostly 1000 iterations) are used, while in [23], the stagnancy of the
cost function is used as a signal for the frequency hopping. The later
scheme avoids the increased CPU time when the cost function drops
in local minima. In [23], the scheme was based on collecting the most
recent 20 samples of the cost function and implementing the average
window technique of each five samples. If the difference between the
averages is less than a threshold (e.g., 1%), the algorithm hops to the
higher frequency.

3.4. Parallelization of the Reconstruction Algorithm

In general, the problem of the shape reconstruction in the stratified
media is more computationally intensive compared with the free space
case. Therefore, it is necessary to implement algorithm parallelization
to speed up the computations. Using the MPI parallelization, the
computational load is distributed between several processors. The
level set algorithm was parallelized for the reconstruction of multiple
2D PEC objects immersed in free space [22] with achieved maximum
speedup range of 53X to 84X using 256 processors on the San
Diego Super Computer Center (SDSC) facilities. In this work, the
parallelized code is tested on the National Center for Supercomputing
Applications (NCSA) at the University of Illinois. NCSA TeraGrid IA-
64 Linux Cluster is employed to run the code. The machine consists of
887 IBM cluster nodes: 256 nodes with dual 1.3 GHz Intel® Itanium®)
2 processors.

The parallelized algorithm in [22] is modified here to accommodate
the Green’s function in stratified media (4). The parallelization
is based on three main bottlenecks; (i) the domain decomposition
approach for updating the level set function in the whole computational
domain, (ii) the distribution of calculating the deformation velocity,
and (iii) the inversion of the MoM impedance matrix using Scalapack
library available on NCSA supercomputers. The details of these
bottlenecks are reported and discussed in [22].

The parallelized level set algorithm using different number of
processors is tested to obtain the same reconstruction results of
Fig. 12. The reconstruction CPU time consumed after 24000 inversion
iterations using a single processor is ~ 7.5 hours while it is 15minutes
when using 128 processors leading to achieve a maximum speedup of
29X as shown in Fig. 13. The corresponding parallelization efficiency
is ~ 22% in this case as shown in Fig. 14. Note that speedup is
defined as the CPU time when using a single processor divided by
the CPU time when using multiple processors on the same platform.
The parallelization efficiency quantitatively describes the effectiveness
of the parallelized code and is defined as the speedup divided by the
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number of processors [22]. The result of Fig. 13 shows a maximum
speedup of ~ 29 when using 128 processors; however, more increasing
of the number of processors was not helpful due to the overhead in the
communications and other factors as discussed in [22]. The maximum
number of 256 processors is used to show the decrease in the speed
up curve in Fig. 13. It is important to emphasize that the presented
algorithm is not limited to symmetric simple shapes of the targets or
to the 2-D configurations as reported in [23]. Also the algorithm was
tested successfully on both TM and TE polarizations [21, 25].

4. CONCLUSIONS

The Level set algorithm is implemented to reconstruct the shape
and location of multiple 2-D PEC objects hidden behind a dielectric
wall with a priori known parameters. The stationary phase method
is implemented to approximate the Sommerfeld integrals to speed
up the calculations and to avoid the inaccuracy generated due to
the arbitrary truncation in the integration limits when numerically
evaluating the full Green’s function. The results demonstrate that the
level set method is capable of reconstructing the shapes and locations
of multiple objects hidden behind a wall even with (i) limited view
data, (ii) corrupted data up to SNR = 10dB, and (iii) near proximity
to the wall. More investigations are necessary to increase the accuracy
of the algorithm when reconstructing fine features in targets located
very close to the wall. Also more work is needed when the wall’s
parameters are not a priori known.
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