1. Konstantatos, G., C. Huang, L. Levina, Z. Lu, and E. H. Sargent, "Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots," Advanced Functional Materials, Vol. 15, No. 11, 1865-1869, 2005.
doi:10.1002/adfm.200500379
2. Stok, A. and E. H. Sargent, "Lighting the local area: Optical code-division multiple access and quality of service provisioning," IEEE Network, Vol. 14, No. 6, 42-46, 2000.
doi:10.1109/65.885669
3. Steckel, J. S., S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, "1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device," Advanced Materials, Vol. 15, No. 21, 1862-1866, 2003.
doi:10.1002/adma.200305449
4. Tessler, N., V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Efficient near-infrared polymer nanocrystal light-emitting diodes," Science, Vol. 295, No. 5599, 1506-1508, 2002.
doi:10.1126/science.1068153
5. Bakueva, L. and S. Musikhin, "Size-tunable infrared (1000--1600nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer," Appl. Phys. Lett., Vol. 82, No. 17, 2895-2897, 2003.
doi:10.1063/1.1570940
6. McDonald, S. A., P. W. Cyr, L. Levina, and E. H. Sargent, "Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors," Appl. Phys. Lett., Vol. 85, No. 11, 2089-2091, 2004.
doi:10.1063/1.1792380
7. Liu, H. C., M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, "Quantum dot infrared photodetectors," Appl. Phys. Lett., Vol. 78, No. 1, 79-81, 2001.
doi:10.1063/1.1337649
8. Böberl, M., M. V. Kovalenko, G. Pillwein, G. Brunthaler, and W. Heiss, "Quantum dot nanocolumn photodetectors for light detection in the infrared," Appl. Phys. Lett., Vol. 92, No. 26, 261113, 2008.
doi:10.1063/1.2949084
9. McDonald, S. A., G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics," Nature Materials, Vol. 4, 138-142, 2005.
doi:10.1038/nmat1299
10. Klem, E. J. D., L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200--1700nm," Appl. Phys. Lett., Vol. 87, 053101, 2005.
doi:10.1063/1.2001737
11. Huynh, W. U., J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science, Vol. 295, No. 5564, 2425-2427, 2002.
doi:10.1126/science.1069156
12. Klimov, V. I., A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science, Vol. 290, No. 5490, 314-317, 2000.
doi:10.1126/science.290.5490.314
13. Schaller, R. D., M. A. Petruska, and V. I. Klimov, "Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals," J. Phys. Chem. B, Vol. 107, No. 50, 13765-13768, 2003.
doi:10.1021/jp0311660
14. Lin, Y.-M. and M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Physical Review B, Vol. 68, No. 7, 075304, 2003.
doi:10.1103/PhysRevB.68.075304
15. Gaponik, N., I. L. Radtchenko, M. R. Gerstenberger, Y. A. Fedutik, G. B. Sukhorukov, and A. L. Rogach, "Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals," Nano Letters, Vol. 3, No. 3, 369-372, 2003.
doi:10.1021/nl0259333
16. Bourdakos, K. N., D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry, "Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device," Appl. Phys. Lett., Vol. 92, No. 15, 153311, 2008.
doi:10.1063/1.2909589
17. Zhao, J. L., J. A. Bardecker, A. M. Munro, M. S. Liu, Y. H. Niu, I.-K. Ding, J. D. Luo, B. Q. Chen, A. K.-Y. Jen, and D. S. Ginger, "Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer," Nano Letters, Vol. 6, No. 3, 463-467, 2006.
doi:10.1021/nl052417e
18. Lu, M.-H. and J. C. Sturn, "External coupling efficiency in planar organic light-emitting devices," Appl. Phys. Lett., Vol. 78, No. 13, 1927-1929, 2001.
doi:10.1063/1.1357207
19. Du, H., C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, "Optical properties of colloidal PbSe nanocrystals," Nano Letters, Vol. 2, No. 11, 1321-1324, 2002.
doi:10.1021/nl025785g
20. Bakueva, L., G. Konstantatos, L. Levina, S. Musikhin, and E. H. Sargent, "Luminescence from processible quantum dot-polymer light emitters 1100--1600 nm: Tailoring spectral width and shape," Appl. Phys. Lett., Vol. 84, No. 18, 3459-3461, 2004.
doi:10.1063/1.1737072
21. Overhof, H. and U. Rossler, "Electronic structure of PbS, PbSe, and PbTe," Phys. Stat. Sol., Vol. 37, No. 2, 691-698, 2006.
22. Chang, T.-W. F., A. Maria, P. W. Cyr, V. Sukhovatkin, L. Levina, and E. H. Sargent, "High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films," Synthetic Metals, Vol. 148, No. 3, 257-261, 2005.
doi:10.1016/j.synthmet.2004.10.003
23. Wehrenberg, B. L., C. Wang, and P. Guyot-Sionnest, "Interband and intraband optical studies of PbSe colloidal quantum dots," J. Phys. Chem. B, Vol. 106, No. 41, 10634-10640, 2002.
doi:10.1021/jp021187e
24. Kim, K.-H., J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, "Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern," Appl. Phys. Lett., Vol. 89, No. 19, 191120, 2006.
doi:10.1063/1.2387862
25. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, 1991.
26. Chance, R. R., A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near metal interfaces," Advances in Chemical Physics, 1-65, S. A. R. I. Prigogine (ed.), Wiley, 1978.
27. Celebi, K., T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Optics Express, Vol. 15, No. 4, 1762-1772, 2007.
doi:10.1364/OE.15.001762
28. Hartman, R. L., S. M. Cohen, and P. T. Leung, "A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces," J. Chem. Phys., Vol. 110, No. 4, 2189-2194, 1999.
doi:10.1063/1.477830
29. Li, L.-W., P.-S. Kooi, M.-S. Leong, and T.-S. Yeo, "Electromagnetic dyadic Green's function in spherically multilayered media," IEEE Trans. on Microwave Theory and Techniques, Vol. 42, No. 12, 2302-2310, 1994.
doi:10.1109/22.339756
30. Lee, C.-C., M.-Y. Chang, Y.-D. Jong, T.-W. Huang, C.-S. Chu, and Y. Chang, "Numerical simulation of electrical and optical characteristicsof multilayer organic light-emitting devices," Jpn. J. Appl. Phys., Vol. 43, No. 11A, 7560-7565, 2004.
doi:10.1143/JJAP.43.7560
31. Himcinschi, C., N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H.-H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, "Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition," Appl. Phys. A, Vol. 80, No. 3, 551-555, 2005.
doi:10.1007/s00339-004-2973-7
32. Handbook of Optical Constants of Solids, E. D. Palik (ed.), Academic, 1985.
33. Seth Coe, W.-K. W., M. Bawendi, and V. Bulović, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature Materials, Vol. 420, 800-803, 2002.
34. Patel, N. K., S. Cinà, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Select. Topics Quantum Electron., Vol. 8, No. 2, 346-361, 2002.
doi:10.1109/2944.999190
35. Lu, M.-H. and J. C. Sturmb, "Optimization of external coupling and light emission in organic light-emitting devices: Modeling and experiment," J. Appl. Phys., Vol. 91, No. 2, 595-604, 2002.
doi:10.1063/1.1425448
36. Kim, H., C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," J. Appl. Phys., Vol. 86, No. 11, 6451-6461, 1999.
doi:10.1063/1.371708
37. Sun, Q. J., Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, "Multicoloured light-emitting diodes based on quantum dots," Nature Photonics, Vol. 1, 717-722, 2007.
doi:10.1038/nphoton.2007.226