Vol. 24
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-29
Analysis and Design of an UHF RFID Metal Tag Using Magnetic Composite Material as Substrate
By
Progress In Electromagnetics Research B, Vol. 24, 49-62, 2010
Abstract
Using magnetic composite material as the substrate for RFID metal tag has several advantages over conventional metal tags, such as flexibility and miniaturized size. In this paper, the radiation intensity contributed by a half-wave dipole is derived based on the result of an ideal Hertzian dipole, which leads to a simple relation for thin substrate. Later on, the material constants of two materials are measured and the one capable of generating greater radiation intensity is used in the course of antenna design. A primitive pattern design demonstrates the metal tag has a satisfactory 2.7 m reading range, and a dimension of 80×22×2 mm3.
Citation
Shih-Kang Kuo, Jen-Yung Hsu, and Yung-Hsiung Hung, "Analysis and Design of an UHF RFID Metal Tag Using Magnetic Composite Material as Substrate," Progress In Electromagnetics Research B, Vol. 24, 49-62, 2010.
doi:10.2528/PIERB10070107
References

1. Chen, S.-L., S.-K. Kuo, and C.-T. Lin, "A metallic RFID tag design for steel-bar and wire-rod management application in the teel industry," Progress In Electromagnetics Research, Vol. 91, 195-212, 2009.
doi:10.2528/PIER09021304

2. "ThyssenKrupp steel's success with RFID noted,", RFIDNews, Sep. 7, 2007.
doi:10.2528/PIER09021304

3. Eunni, M. B., "A novel planar microstrip antenna design for UHF RFID ,", M.S. Thesis, University of Kansas, Jul., 2006.

4. Mo, L., H. Zhang, and H. Zhou, "Broadband UHF RFID tag antenna with a pair of U slots mountable on metallic objects," Electronics Letters, Vol. 44, No. 20, 1173-1174, Sep., 2008.
doi:10.1049/el:20089813

5. European Patent Application, EP1632926.

6. Kuo, S.-K., S.-L. Chen, and C.-T. Lin, "Design and development of RFID label for steel coil," IEEE Transactions on Industrial Electronics, Vol. 57, No. 6, 2180-2186, Jun., 2010.
doi:10.1109/TIE.2009.2034174

7. Yang, L., L. Martin, D. Staiculescu, C. P. Wong, and M. M. Tentzeris, "A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications ," Procs. of the IEEE-IMS Symposium, 963-966, Atlanta, GA, Jun., 2008.

8. Jackson, D. R. and N. G. Alexopoulos, "Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 3, Mar., 1991.

9. Hirvonen, M. and S. A. Tretyakov, "Near-zero permittivity substrates for horizontal antennas: Performance enhancement and limitations," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2008.
doi:10.1002/mop.23739

10. Ikonen, P. M. T., S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov, "On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, 1654-1662, 2006.
doi:10.1109/TAP.2006.875912

11. Li, R. L., G. DeJean, M. M. Tentzeris, J. Papapolymerou, and J. Laskar, "Radiation-pattern improvement of patch antennas on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 200-208, 2005.
doi:10.1109/TAP.2005.856374

12. Nicholson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

13. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

14. Zhang, B., Y. Feng, J. Xiong, Y. Yang, and H. Lu, "Microwave-absorbing properties of de-aggregated flake-shaped carbonyliron particle composites at 2--18 GHz," IEEE Transactions on Magnetics, Vol. 42, No. 7, 1778-1881, 2006.
doi:10.1109/TMAG.2006.874188

15. Folgueras, L., M. Alves, and M. Rezende, "Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: Measurement and simulation of their properties," Journal of Aerospace and Management, Vol. 2, No. 1, 63-70, 2010.
doi:10.5028/jatm.2010.02016370

16. Kuo, S.-K., S.-L. Chen, and C.-T. Lin, "An accurate method for impedance measurement of rfid tag antenna," Progress In Electromagnetics Research, Vol. 83, 93-106, 2008.
doi:10.2528/PIER08042104

17. Kuo, S.-K. and L.-G. Liao, "An analytic model for impedance calculation of an RFID metal tag," to appear in IEEE Antennas and Wireless Progagation Letters.

18. Yang, G. M., X. Xing, A. Daigle, M. Liu, O. Obi, S. Stoute, K. Naishadham, and N. X. Sun, "Tunable miniaturized patch antennas with self-biased multilayer magnetic films," IEEE Transactions on Antennas and Propagation, Vol. 57, 2190-2193, 2009.
doi:10.1109/TAP.2009.2021972

19. Yang, G. M., X. Xing, A. Daigle, O. Obi, M. Liu, S. Stoute, K. Naishadham, and N. X. Sun, "Loading effects of self-biased magnetic films on patch antennas with substrate/superstrate sandwich structure," IEEE Transactions on Antennas and Propagation, Vol. 58, 648-655, 2010.
doi:10.1109/TAP.2009.2039295