Vol. 24
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-06
Finite Length Omni-Directional Cylindrical Spatial Filters
By
Progress In Electromagnetics Research B, Vol. 24, 79-101, 2010
Abstract
A finite length cylindrical FSS is proposed as a spatial filter for both transmitting and receiving antennas. This filter has the advantage of not perturbing the omnidirectional property of the enclosed antenna. The proposed surface is constructed up as cylindrical array of rectangular conducting patches. The strips are arranged periodically in the φ- and z-directions. The electric field integral equation (EFIE) approach is used for analyzing the characteristics of the proposed spatial filter. The Rao-Wilton-Glisson (RWG) basis functions are used for current expansion on the conducting strips. The mutual effects between the filter and the antenna can be accurately investigated. The effects of some dimensional parameters on the filter characteristics, such as, the axial and angular spacing between the array elements, the length and the radius of the cylindrical surface are studied over a wide frequency range. The oblique incidence of plane waves on such a cylindrical filter is studied with varying the direction of incidence. The performance of the proposed spatial filter is examined when operating with nearby antennas. The effects of such a filter on the input impedance, VSWR, and radiation pattern of an enclosed bowtie antenna are investigated over a wide frequency range.
Citation
Asmaa Elsayed Farahat, Khalid Fawzy Ahmed Hussein, and Nagda El-Minyawi, "Finite Length Omni-Directional Cylindrical Spatial Filters," Progress In Electromagnetics Research B, Vol. 24, 79-101, 2010.
doi:10.2528/PIERB10062106
References

1. Cwik, T., R. Mittra, K. C. Lang, and T. K. Wu, "Frequency selective screens," IEEE Antennas Propagat. Soc. Newsletter, 6-10, Apr., 1987.

2. Agrawal, V. D. and W. A. Imbriale, "Design of dichroic cassegrain subreflector," IEEE Antennas Propagat. Trans., Vol. 27, No. 6, 466-473, Jul., 1979.

3. Gerini, G. and L. Zappelli, "Multilayer array antennas with integrated frequency selective surfaces conformal to a circular cylindrical surface," IEEE Antennas Propagat. Trans., Vol. 53, No. 6, Jun., 2005.

4. Sung, G. H., K. W. Sowerby, M. J. Neve, and A. G. Williamson, "A frequency-selective wall for interference reduction in wireless indoor environments," IEEE Antennas Propagat Magazine, Vol. 48, No. 5.

5. Lalezari, F. and P. A. Zidek, "Antenna system utilizing frequency selective surface,", US Patent No. 5982339, Nov. ,1999.

6. Wu, T. K., J. J. Macek, and Bever, "Frequency selective surface filter for an antenna,", US Patent No. 5949387, Sep., 1999.

7. Qing, A., "Vector spectral-domain method for the analysis of frequency selective surfaces," Progress In Electromagnetics Research, Vol. 65, 201-232, 2006.
doi:10.2528/PIER06091401

8. Vardaxoglou, J. C., Frequency Selective Surface, Analysis and Design, Research Studies Press Ltd., 1997.

9. Chen, C. C., "Scattering by a two dimensional periodic array of conducting plates," IEEE Trans. Antennas Propagat., Vol. 18, 660-665, 1970.
doi:10.1109/TAP.1970.1139760

10. Alexopoulous, N. G., P. L. E. Uslenghi, and N. K. Uzunoglu, "Microstrip dipoles on cylindrical structures," 1981 Antennas Applications Symposium Proceedings, University of Illinois, Sep., 1981.

11. Cwik, T., "Coupling into and scattering from cylindrical structure covered periodically with metallic patches," IEEE Trans. Antennas Propagat., Vol. 38, No. 2, 220-226, Feb., 1990.
doi:10.1109/8.45124

12. Uzer, A. and T. Ege, "Radiation from a current filament located inside a cylindrical frequency selective surface," ETRI Journal, Vol. 26, No. 5, 481-485, Oct., 2004.
doi:10.4218/etrij.04.0103.0049

13. Cwik, T. and R. Mittra, "The effects of truncation and curvature of periodic surfaces: A strip grating," IEEE Trans. Antennas and Propagat., Vol. 36, 612-622, May, 1988.
doi:10.1109/8.192137

14. Carogalnian, A. and K. J. Webb, "Study of curved and planar frequency-selective surfaces with non-planar illumination," IEEE Trans. Antennas Propagat., Vol. 39, No. 2, 211-217, Feb., 1991.
doi:10.1109/8.68184

15. Ko, W. L. and R. Mittra, "Scattering from an array of metallic patches located on a curved surface," IEEE Antennas Propagat. Soc. Dig., 642-645, Syracuse, NY, 1988.

16. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May, 1982.
doi:10.1109/TAP.1982.1142818

17. Hussein, K. A., "Fast computational algorithm for EFIE applied to arbitrarily shaped conducting surface," Progress In Electromagnetics Research, Vol. 68, 339-357, 2007.
doi:10.2528/PIER06122502

18. Farahat, A. E., . A. Hussein, and N. M. El-Minyawi, "Spatial filters for linearly polarized antennas using free standing frequency selective surface," Progress In Electromagnetics Research M, Vol. 2, 167-188, 2008.
doi:10.2528/PIERM08041606

19. Hussein, K. A., "Efficient near field computation for radiation and scattering from conducting surfaces of arbitrary shape," Progress In Electromagnetics Research M, Vol. 69, 267-285, 2007.

20. Hussein, K. F. A., "Accurate computational algorithm for calculation of input impedance of antennas of arbitrary shaped conducting surfaces," ACES, Vol. 22, No. 3, Nov., 2007.