Vol. 23
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-13
Exact Electromagnetic Field Excited by a Vertical Magnetic Dipole on the Surface of a Lossy Half-Space
By
Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010
Abstract
A rigorous analytical procedure is developed that allows the exact evaluation of the complete integral representations for the time-harmonic electromagnetic (EM) field components generated by a vertical magnetic dipole (VMD) lying on the surface of a flat and homogeneous lossy half-space. Closed-form expressions for the radial distributions of the EM field components induced on the surface of the half-space are provided in terms of exponential functions and modified Bessel functions. Such expressions make it possible to overcome the limitations implied by the previously published quasi-static solutions, which are valid only in the low-frequency range. Numerical results are presented to show where the quasi-static approximations deviate from the exact solutions for a given homogeneous medium as frequency is changed. The computed amplitude and phase frequency spectra of the EM field components demonstrate that the quasi-static approach fails at frequencies higher than 1 MHz, and that, in particular, it leads to underestimating the EM field strength. Finally, it is also shown that at a frequency equal to or greater than 10 MHz excellent results in terms of accuracy may be obtained by using the high-frequency asymptotic forms of the exact solutions.
Citation
Mauro Parise, "Exact Electromagnetic Field Excited by a Vertical Magnetic Dipole on the Surface of a Lossy Half-Space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010.
doi:10.2528/PIERB10060707
References

1. Simons, N. R. S., A. Sebak, and G. E. Bridges, "Application of the TLM method to half-space and remote-sensing problems," IEEE Trans. Geosci. Remote Sensing, Vol. 33, No. 3, 759-767, 1995.
doi:10.1109/36.387591

2. Rafi, G. Z., R. Moini-Mazandaran, and R. Faraji-Dana, "A new time domain approach for analysis of vertical magnetic dipole radiation in front of lossy half-space," Progress In Electromagnetics Research, Vol. 29, 57-68, 2000.
doi:10.2528/PIER99101804

3. Cui, T. J., W. C. Chew, A. A. Aydiner, D. L.Wright, D. W. Smith, and J. D. Abraham, "Numerical modeling of an enhanced very early time electromagnetic (VETEM) prototype system," IEEE Antennas Propagat. Magazine, Vol. 42, No. 2, 17-27, 2000.
doi:10.1109/74.842122

4. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, 2009.

5. Wait, J. R., "Mutual electromagnetic coupling of loops over a homogeneous ground," Geophysics, Vol. 20, No. 3, 630-637, 1955.
doi:10.1190/1.1438167

6. Das, I. and IEEE Trans. Geosci. Remote Sensing, "Effects of soil electromagnetic properties on metal detectors,", Vol. 44, No. 6, 1444-1453, 2006.

7. Cui, T. J., W. C. Chew, X. X. Yin, and W. Hong, "Study of resolution and super resolution in electromagnetic imaging for half-space problems," IEEE Trans. Antennas Propagat., Vol. 52, No. 6, 1398-1411, 2004.
doi:10.1109/TAP.2004.829847

8. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, No. 1, 181-200, 2005.
doi:10.1007/s00024-004-2586-2

9. Van der Pol, B., "On discontinuous electromagnetic waves and the occurrence of a surface wave," IRE Trans. Antennas Propagat., Vol. 4, 288-293, 1956.

10. Nikoskinen, K. I., "Time-domain study of half-space transmission problem with vertical and horizontal dipoles," IEEE Trans. Antennas Propagat., Vol. 41, No. 10, 1399-1407, 1993.
doi:10.1109/8.247780

11. Nikoskinen, K. I. and I. V. Lindell, "Time-domain analysis of the sommerfeld VMD problem based on the exact image theory," IEEE Trans. Antennas Propagat., Vol. 38, No. 2, 241-250, 1990.
doi:10.1109/8.45127

12. Haddad, H. and D. C. Cheng, "Transient electromagnetic field generated by a vertical dipole on the surface of a dissipative earth," Radio Science, Vol. 16, No. 2, 169-177, 1981.
doi:10.1029/RS016i002p00169

13. Parise, M. and S. Cristina, "High-order electromagnetic modeling of shortwave inductive diathermy effects," Progress In Electromagnetics Research, Vol. 92, 235-253, 2009.
doi:10.2528/PIER09022608

14. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3D BI-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009.
doi:10.1163/156939309787604706

15. Milligan, T. A., Modern Antenna Design, Wiley-IEEE Press, 2005.
doi:10.1002/0471720615

16. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

17. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1994.
doi:10.1109/9780470546307

18. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, 1964.

19. Priestley, H. A., Introduction to Integration, Oxford University Press, 1997.

20. Erdelyi, A., Tables of Integral Transforms, Vol. 2, McGraw-Hill, 1954.

21. Liu, L., K. Li, and W.-Y. Pan, "Electromagnetic field from a vertical electric dipole in a four-layered region," Progress In Electromagnetics Research B, Vol. 8, 213-241, 2008.
doi:10.2528/PIERB08062108

22. Lu, Y. L., Y.-L. Wang, Y. H. Xu, and K. Li, "Electromagnetic field of a horizontal electric dipole buried in a four-layered region," Progress In Electromagnetics Research B, Vol. 16, 247-275, 2009.
doi:10.2528/PIERB09061103

23. Illahi, A., M. Afzaal, and Q. A. Naqvi, "Scattering of dipole field by a perfect electromagnetic conductor cylinder," Progress In Electromagnetics Research Letters, Vol. 4, 43-53, 2008.
doi:10.2528/PIERL08051601

24. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Ed., Academic Press, 2007.

25. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, 1986.