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EXACT ELECTROMAGNETIC FIELD EXCITED BY A
VERTICAL MAGNETIC DIPOLE ON THE SURFACE OF
A LOSSY HALF-SPACE
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University Campus Bio-Medico of Rome
Via Alvaro del Portillo 21, 00128 Rome, Italy

Abstract—A rigorous analytical procedure is developed that allows
the exact evaluation of the complete integral representations for the
time-harmonic electromagnetic (EM) field components generated by
a vertical magnetic dipole (VMD) lying on the surface of a flat and
homogeneous lossy half-space. Closed-form expressions for the radial
distributions of the EM field components induced on the surface of the
half-space are provided in terms of exponential functions and modified
Bessel functions. Such expressions make it possible to overcome the
limitations implied by the previously published quasi-static solutions,
which are valid only in the low-frequency range. Numerical results are
presented to show where the quasi-static approximations deviate from
the exact solutions for a given homogeneous medium as frequency is
changed. The computed amplitude and phase frequency spectra of
the EM field components demonstrate that the quasi-static approach
produces inaccurate results at frequencies higher than 1 MHz, and
that, in particular, it leads to underestimating the EM field strength.
Finally, it is also shown that at a frequency equal to or greater than
10MHz excellent results in terms of accuracy may be obtained by using
the high-frequency asymptotic forms of the exact solutions.

1. INTRODUCTION

It is well known that measuring the EM field produced by a current-
carrying insulated wire loop lying on the surface of a terrestrial
area makes it possible to acquire information about the subsurface
structure [1–6]. In particular, when the soil properties do not vary
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spatially, the presence of shallow buried objects such as mines, metals,
or mineral resources can be detected by the departure of the recorded
time- or frequency-domain experimental data from the theoretical
results obtained regarding the ground as a homogeneous conducting
half-space [1–5, 7].

It is a common practice to compute the theoretical response curves
by treating the loop source as a vertical magnetic dipole. The small
loop assumption is reasonable, since the diameter of the source is in
most cases small if compared to both the source-receiver distance
and the free-space wavelength. A number of analytical and semi-
analytical techniques have been recently developed for evaluating the
time- and frequency-domain complete integral expressions for the EM
field components produced by a VMD placed above the surface of a
material half-space [1–6, 8–13].

In particular, closed-form solutions in the frequency-domain have
been derived under the quasi-static field assumption [4, 6], that is
neglecting the high-frequency effects due to the displacement currents
in both the air and the ground. Such solutions constitute the preferred
choice when the measurement data to be interpreted are in terms
of mutual impedance between source and receiver loops (that is the
voltage induced in the receiver loop per unit current flowing in the
source loop [1, 5, 6, 8, 14]), but unfortunately are valid only in the low-
frequency range.

In this paper, the exact closed-form expressions for the time-
harmonic EM field components excited by a VMD lying on the
surface of a flat and homogeneous lossy half-space are derived, with
the principal aim of identifying the boundary between quasi-static
and non-quasi-static frequency regions. As it frequently occurs that
the whole EM prospecting system (i.e., both source and receiver) is
positioned on the ground to be explored, the discussion is limited
to the case where even the observation point is located on the half-
space. The paper is organized as follows. In Section 2 the complete
integral representations for the EM field components are cast into forms
involving only known tabulated Sommerfeld Integrals. In Section 3,
the derived closed-form expressions are used to compute both the
amplitude- and phase-frequency spectra of the fields, and the achieved
results are compared with the data provided by both the quasi-static
and high-frequency formulations. It is concluded from the conducted
analysis that the quasi-static formulation is valid up to 1MHz, while
it leads to underestimating the EM field strength by a factor greater
than 100 for frequencies higher than 10 MHz, whereas excellent results
in terms of accuracy may be obtained by using the high-frequency
asymptotic forms of the exact solutions. Finally, some conclusive
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remarks are drawn in Section 4.
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Figure 1. Sketch of a vertical magnetic dipole on a homogeneous lossy
medium.

2. THEORY

Consider a VMD of moment mejωt lying on the surface of a flat,
homogeneous, isotropic and linear lossy medium, as shown in Fig. 1.
Due to symmetry about the axis of the dipole, a cylindrical co-ordinate
system (r, ϕ, z) is suitably introduced. The medium is assumed to have
the magnetic permeability of free space µ0, dielectric permittivity ε1
and electric conductivity σ1. The time-harmonic analytical expressions
for the non-null EM field components Eϕ, Hρ, and Hz generated on
the surface of the medium can be obtained from those corresponding to
source and field points located respectively at heights h and −z above
the medium by setting h = 0 and z = 0. Thus, with the time-harmonic
factor ejωt suppressed for better clarity, the EM field components may
be expressed as [2, 8, 15–17]

Eϕ (ρ) =
jωµ0m

4π
(
k2

0 − k2
1

) ∂

∂ρ
[Fp + Fs] z=0

h=0
, (1)

Hρ (ρ) =
m

4π
(
k2

0 − k2
1

) ∂

∂ρ

∂Fs

∂z

∣∣∣∣
z=0
h=0

, (2)

Hz (ρ) = − m
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∂ρ2
+

1
ρ

∂
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)
[Fp + Fs] z=0

h=0
, (3)

with

Fp (ρ, z, h) =
(
k2

0 − k2
1

) e−jk0r

r
, (4)

Fs (ρ, z, h) =
(
k2

0 − k2
1

) ∫ ∞

0
RTEe−u0(h−z) λ

u0
J0(λρ)dλ, (5)
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and being r = [ρ2 + (h + z)2]1/2. In the above equations, J0(ξ) is the
zeroth-order Bessel function, and

RTE=
u0 − u1

u0 + u1
(6)

is the transverse electric plane wave reflection coefficient at z=0, with

un = (λ2 − k2
n)1/2, (7)

kn = (ω2µnεn + jωµnσn)1/2. (8)

The subscripts p and s in (1)–(5) denote respectively the primary
(free-space) contribution to the field, due to the VMD alone, and the
secondary (scattered) contribution arising from the electric currents
induced in the lossy medium. Equation (2) dictates that there does
not exist a radial component for the primary magnetic field in the
plane of the dipole.

In the past, because of the lack of available analytical techniques
for evaluating (1)–(3), the conventional approach was to assume the
hypothesis of quasi-static field, which consists of neglecting the effects
of the displacement current in both the air and the ground [4–6]. The
chief drawback of the solutions obtained under this assumption is that,
when used for acquiring information about the ground subsurface,
they do not permit to interpret high-frequency measurement data.
To overcome this limitation, in this paper the exact closed-form
expressions for the EM field components are derived through a rigorous
analytical integration procedure. Since expression (4) for Fp is in
explicit form, the problem of evaluating Eϕ, Hρ, and Hz reduces to
that of calculating the secondary terms Fs and ∂Fs/∂z for z=h=0.
Throughout the analysis the dependences of the field quantities upon
ρ, z, and h will be omitted for notational simplicity.

As u2
n=λ2−k2

n, multiplying the numerator and denominator of (6)
by u0 − u1 leads to

RTE=
(u0 − u1)2

k2
1 − k2

0

=
2λ2 − 2u0u1 − k2

0 − k2
1

k2
1 − k2

0

, (9)

which, substituted into (5), yields

Fs = F I
s + F II

s , (10)

where

F I
s = −

∫ ∞

0

(
2λ2 − k2

0 − k2
1

)
e−u0(h−z) λ

u0
J0(λρ)dλ, (11)

F II
s = 2

∫ ∞

0
u1e

−u0(h−z)λJ0(λρ)dλ. (12)
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Use of the identity [18]

λ2J0(λρ) = −
(

∂2

∂ρ2
+

1
ρ

∂

∂ρ

)
J0(λρ), (13)

and the relation

u1 =
u2

1

u1
=

λ2 − k2
1

u1
, (14)

makes it possible to rewrite (11) and (12) as

F I
s =

(
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F II
s = −2

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+ k2

1

) ∫ ∞

0
e−u0(h−z) λ

u1
J0(λρ)dλ, (16)

being R = [ρ2 + (h− z)2]1/2.
Notice that casting (11) and (12) into the forms (15) and (16) is

allowed to the extent that a derivative of arbitrary order with respect
to ρ can be moved outside the integrals. It reads
∫ ∞

0
e−u0(h−z)f(λ)

∂ lJ0(λρ)
∂ρ l

dλ =
∂ l

∂ρ l

∫ ∞

0
e−u0(h−z)f(λ)J0(λρ)dλ (17)

where f(λ) is equal to λ/un (n = 0, 1). The above interchange of
derivative and integral is justified in virtue of the continuous dominated
convergence theorem (CDCT) [19, Chap. 19], because the function

∣∣∣∣e−u0(h−z)f(λ)
∂ lJ0(λρ)

∂ρ l

∣∣∣∣ = e−<{u0}(h−z)

∣∣∣∣f(λ)
∂ lJ0(λρ)

∂ρ l

∣∣∣∣ (18)

is integrable over [0,∞) for all ρ>0 and for all l≥0, as it exponentially
decays with increasing λ.

Since it results[
e−jk0R

R

]
z=0
h=0

=
[
e−jk0r

r

]
z=0
h=0

=
e−jk0ρ

ρ
, (19)

from (15) in conjunction with (4) it can be concluded that

F I
s

∣∣
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h=0

=
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2
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+

2
ρ

∂
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+k2
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1
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with
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(
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+

1
ρ
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n

)
e−jknρ

ρ
= (jknρ + 1)
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ρ3
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On the other hand, substitution of the identity [20, No. 4, P. 7]
[∫ ∞

0
e−u0(h−z) λ

u1
J0(λρ)dλ

]
z=0
h=0

=
∫ ∞

0

λ

u1
J0(λρ)dλ =

e−jk1ρ

ρ
(22)

into (16) leads to

F II
s

∣∣
z=0
h=0

= −2
(

∂2

∂ρ2
+

1
ρ

∂

∂ρ
+ k2

1

)
e−jk1ρ

ρ
= −2Q1(ρ), (23)

which can be added to (20) to give

Fs| z=0
h=0

= − Fp| z=0
h=0

+ 2 [Q0(ρ)−Q1(ρ)] . (24)

Next, calculating the first derivative of (15) with respect to z
provides

∂F I
s

∂z
=

(
2
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∂ρ2
+

2
ρ

∂
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+ k2

0 + k2
1

)[
(h− z) (jk0R + 1)

e−jk0R
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]
, (25)

which implies, as a consequence,

∂F I
s

∂z

∣∣∣∣
z=0
h=0

= 0, (26)

while applying the z-derivative to (16), and then setting z and h to
zero, yields

∂F II
s

∂z

∣∣∣∣
z=0
h=0

= −2
(
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∂ρ2
+
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with

S(ρ) =
[∫ ∞

0
e−u0(h−z) u0

u1
λJ0(λρ)dλ

]
z=0
h=0

. (28)

To evaluate (28), it is convenient to multiply the numerator and
denominator of the integrand by u0 and then use (7) and (13) to obtain

S(ρ) =
[∫ ∞

0
e−u0(h−z) λ

2 − k2
0
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λJ0(λρ)dλ

]
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λ
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The integral on the right-hand side of (29) can be evaluated by
using [20, No. 17, P. 8]. It results

∫ ∞

0

λ

u0u1
J0(λρ) dλ = K0 (αρ) I0 (βρ) , (30)
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where I0(ξ) and K0(ξ) are the zeroth-order modified Bessel functions
of the first and second kind, respectively, and

α =
1
2
j (k1 + k0) , β =

1
2
j (k1 − k0) . (31)

Combining (27), (29), and (30) leads to the equation
∂F II

s

∂z

∣∣∣∣
z=0
h=0

= 2
(

∂2

∂ρ2
+

1
ρ

∂

∂ρ
+k2

1

)(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+k2

0

)
K0 (αρ) I0 (βρ)

= 2
[

∂4

∂ρ4
+

2
ρ

∂3

∂ρ3
+

(
− 1

ρ2
+ k2

0 + k2
1

)
∂2

∂ρ2

+
(

1
ρ3

+
k2

0 + k2
1

ρ

)
∂

∂ρ
+ k2

0k
2
1

]
K0 (αρ) I0 (βρ) , (32)

which, after performing all the derivatives and making use of the
relations
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4αβ = k2
0 − k2

1, (35)
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Substituting (24) into (1) and (3) gives rise to the radial

distributions of Eϕ and Hz, namely
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dQn (ρ)
dρ

=
(
k2

nρ2 − 3jknρ− 3
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and

Q̂n (ρ) = Q′′
n (ρ)+

Q′
n (ρ)
ρ

= (−jk3
nρ3−4k2

nρ2+9jknρ+9)
e−jknρ

ρ5
. (41)

Finally, the radial magnetic field component Hρ is obtained by
using (26) and (36) in (2). It is found that

Hρ (ρ) =
mαβ

4π

d

dρ
[K2 (αρ) I2 (βρ)−K0 (αρ) I0 (βρ)]

=
m

πρ

[
α2 + β2

2
K1 (αρ) I1 (βρ)− αβK2 (αρ) I2 (βρ)

]
. (42)

The familiar quasi-static expressions for the fields may be obtained
directly from (37), (38), and (42) by setting k0=0. Under this
condition, from (31), (39), and (41) it follows that

α = β =
jk1

2
=

γ

2
, Q′

0 (ρ) = − 3
ρ4

, Q̂0 (ρ) =
9
ρ5

, (43)

and, as a consequence, it yields

Eϕ (ρ) = −jωµ0m

2πγ2ρ4
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2
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Hz (ρ) = − m

2πγ2ρ5

[
9− (γ3ρ3 + 4γ2ρ2 + 9γρ + 9)e−γρ

]
, (46)

that is the same equations as in [4–6].
Other useful expressions are the far-field or high-frequency

approximations of (37), (38), and (42). Retaining only the higher-order
powers of knρ [21–23] in (39) and (41), and introducing the asymptotic
forms of the modified Bessel functions for large arguments [24, 8.451]

In(βρ) ≈ eβρ + (−1)nje−βρ

√
2πβρ

, (47)

Kn(αρ) ≈
√

π

2αρ
e−αρ, (48)

in (42), make it possible to obtain the formulas
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)
, (51)
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the last of which is identical to the expression given by Kong [25,
Sec. 4.9, No. 19].

3. RESULTS AND DISCUSSION

The exact formulas (37), (38), and (42) are applied to the computation
of the EM field components generated on the top surface of a medium
with ε1=10 ε0 at distance ρ = 100 m from a unit-moment VMD. At
first, the amplitudes of Eϕ, Hρ, and Hz versus frequency are computed
for two different values of the conductivity σ1. The obtained results,
depicted in Figs. 2–4, are compared with the data provided by the
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quasi-static solutions (44)–(46). It should be noted that each exact
curve and its quasi-static approximation are overlapping in the low-
frequency range up to about 1MHz. Starting from such frequency, the
two trends diverge. From the analysis of the plotted curves it is also
seen that at frequencies higher than 10 MHz the quasi-static approach
leads to underestimating the amplitudes of the field components by
more than two orders of magnitudes. Furthermore, exact curves exhibit
an abrupt slope increase near 1 MHz, which is followed by a positive-
slope high-frequency asymptotic behavior. On the contrary, the quasi-
static profiles maintain the same slope as below 1MHz, and their
high-frequency asymptotes are almost horizontal. Figs. 2–4 also point
out that the high-frequency asymptotes of the amplitude curves shift
downward as σ1 increases.

Significant conclusions can be also drawn from the analysis of
Figs. 5–7, which illustrate the behavior of the phase angle of Eϕ, Hρ,
and Hz as a function of frequency. First, it is confirmed that the
quasi-static assumption is valid up to some MHz. Second, it should
be noticed that all the phase curves undergo a transition from a non-
periodic to a periodic-like behavior when entering the non-quasi-static
frequency region. In order to better distinguish successive cycles of
the periodic trend, the logarithmic frequency scale is replaced with
a linear scale starting from the abscissa value marked with a cross
(< 3MHz). The basic pattern that repeats itself in the periodic
structure is approximately a line segment. This means that, for
frequencies higher than 3MHz, the real and imaginary parts of the
EM field components oscillate harmonically with increasing frequency.
Moreover, the plotted curves demonstrate that at 100 kHz and over the
phase angle is weakly affected by a variation of the conductivity σ1.
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It is possible to show that the frequency range of validity of
the quasi-static approximation cannot be significantly affected by a
variation of the dielectric permittivity ε1 of the half-space. In fact,
assuming σ1 = 0.01 S/m, at a frequency lower than 1 MHz it results
σ1/ω > 180 ε0 À εr1ε0, as in real applications the relative permittivity
of the ground εr1 is at most equal to 20. This means that the
wavenumber k1 has effectively a very weak dependence on ε1. As
a consequence, at less than 1 MHz both the exact and quasi-static
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curves do not suffer significant changes with varying εr1 between 1 and
20, and the frequency at which the two trends start to diverge also
remains unaltered. This aspect is pointed out in Fig. 8, where the
various amplitude-frequency spectra of Eϕ corresponding to different
values of εr1 are seen to be overlapping in the low-frequency range up
to about 10 MHz.

Finally, Figs. 9–11 illustrate the amplitude-frequency spectra
of the fields computed by applying the exact, the high-frequency,
and the quasi-static formulations. What emerges from the analysis
of the plotted curves is that the transition zone where both the
approximations lead to inaccurate results is a small frequency interval
in a neighbourhood of 1 MHz.

4. CONCLUSION

The closed-form exact expressions for the radial distributions of the
EM field components excited by a VMD on the surface of a material
half-space have been derived in this paper. The expressions are in
terms of exponential funtions (Eϕ- and Hz-field) and modified Bessel
functions (Hρ-field), and result from a rigorous analytical procedure
that has allowed to cast the complete integral representations for the
time-harmonic EM field components into forms involving only known
tabulated Sommerfeld Integrals. As exact solutions, they are valid
in the quasi-static as well as non-quasi-static frequency regions and,
unlike the previously published quasi-static solutions, make it possible
to interpret high-frequency measurement data acquired for probing
interiors of terrestrial areas. Numerical results are presented to outline
the frequency range of validity of the quasi-static approximation. The
obtained results show that the amplitude- and phase-frequency spectra
of Eϕ, Hρ, and Hz computed by applying the quasi-static approach
deviate from the exact ones starting from the frequency of about
1MHz. Moreover, at frequencies higher than 10 MHz quasi-static
solutions give rise to an underestimation of the amplitudes of the
fields by more than two orders of magnitudes, while high-frequency
asymptotic forms of the exact solutions yield very accurate results.
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