Vol. 105
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-12
Pareto Optimal Yagi-Uda Antenna Design Using Multi-Objective Differential Evolution
By
Progress In Electromagnetics Research, Vol. 105, 231-251, 2010
Abstract
Antenna design problems often require the optimization of several conflicting objectives such as gain maximization, sidelobe level (SLL) reduction and input impedance matching. Multi-objective Evolutionary Algorithms (MOEAs) are suitable optimization techniques for solving such problems. An efficient algorithm is Generalized Differential Evolution (GDE3), which is a multi-objective extension of Differential Evolution (DE). The GDE3 algorithm can be applied to global optimization of any engineering problem with an arbitrary number of objective and constraint functions. Another popular MOEA is Nondominated Sorting Genetic Algorithm-II (NSGA-II). Both GDE3 and NSGA-II are applied to Yagi-Uda antenna design under specified constraints. The numerical solver used for antenna parameters calculations is SuperNEC, an object-oriented version of the numerical electromagnetic code (NEC-2). Three different Yagi-Uda antenna designs are considered and optimized. Pareto fronts are produced for both algorithms. The results indicate the advantages of this approach and the applicability of this design method.
Citation
Sotirios K. Goudos, Katherine Siakavara, Elias Vafiadis, and John Sahalos, "Pareto Optimal Yagi-Uda Antenna Design Using Multi-Objective Differential Evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302
References

1. Cheng, D. K. and C. A. Chen, "Optimum element spacings for Yagi-Uda arrays," IEEE Transactions on Antennas and Propagation, Vol. 21, 615-623, 1973.
doi:10.1109/TAP.1973.1140551

2. Chen, C. A. and D. K. Cheng, "Optimum element lengths for Yagi-Uda arrays," IEEE Transactions on Antennas and Propagation, Vol. 23, 8-15, 1975.
doi:10.1109/TAP.1975.1141001

3. Cheng, D. K., "Gain optimization for Yagi-Uda arrays," IEEE Antennas and Propagation Magazine, Vol. 33, 42-45, 1991.
doi:10.1109/74.88220

4. Jones, E. A. and W. T. Joines, "Design of Yagi-Uda antennas using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 45, 1386-1392, 1997.
doi:10.1109/8.623128

5. Venkatarayalu, N. V. and T. Ray, "Single and multi-objective design of Yagi-Uda antennas using computational intelligence," Congr. Evol. Comput., Vol. 2, 1237-1242, 2003.

6. Venkatarayalu, N. V. and T. Ray, "Optimum design of Yagi-Uda antennas using computational intelligence," IEEE Transactions on Antennas and Propagation, Vol. 52, 1811-1818, 2004.
doi:10.1109/TAP.2004.831338

7. Baskar, S., A. Alphones, P. M. Suganthan, and J. J. Liang, "Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation," IEE Proceedings: Microwaves, Antennas and Propagation, Vol. 152, 340-346, 2005.
doi:10.1049/ip-map:20045087

8. Kuwahara, Y., "Multiobjective optimization design of Yagi-Uda antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, 1984-1992, 2005.
doi:10.1109/TAP.2005.848501

9. Misra, I. S., R. S. Chakrabarty, and B. B. Mangaraj, "Design, analysis and optimization of V-dipole and its three-element Yagi-Uda array," Progress In Electromagnetics Research, Vol. 66, 137-156, 2006.
doi:10.2528/PIER06102604

10. Rattan, M., M. S. Patterh, and B. S. Sohi, "Optimization of Yagi-Uda antenna using simulated annealing," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 291-299, 2008.
doi:10.1163/156939308784160749

11. Bemani, M. and S. Nikmehr, "A novel wide-band microstrip Yagi-Uda array antenna for WLAN applications," Progress In Electromagnetics Research B, Vol. 16, 389-406, 2009.
doi:10.2528/PIERB09053101

12. Li, J. Y. and J. L. Guo, "Optimization technique using differential evolution for Yagi-Uda antennas," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 449-461, 2009.
doi:10.1163/156939309787612356

13. Teisbaek, H. B. and K. B. Jakobsen, "Koch-fractal Yagi-Uda antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 149-160, 2009.
doi:10.1163/156939309787604337

14. Chou, H. T., K. L. Hung, and C. Y. Chen, "Utilization of a Yagi antenna director array to synthesize a shaped radiation pattern for optimum coverage in wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 851-861, 2009.
doi:10.1163/156939309788355298

15. Sun, B. H., S. G. Zhou, Y. F. Wei, and Q. Z. Liu, "Modified two-element Yagi-Uda antenna with tunable beams," Progress In Electromagnetics Research, Vol. 100, 175-187, 2010.
doi:10.2528/PIER09111501

16. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

17. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

18. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the di®erential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

19. Zhang, Y. J., S. X. Gong, and Y. X. Xu, "Radiation pattern synthesis for arrays of conformal antennas mounted on an irregular curved surface using modified genetic algorithms," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1255-1264, 2009.
doi:10.1163/156939309789108589

20. Zhang, S., S. X. Gong, Y. Guan, P. F. Zhang, and Q. Gong, "A novel IGA-edsPSO hybrid algorithm for the synthesis of sparse arrays," Progress In Electromagnetics Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIER08120806

21. Lim, S. and H. Ling, "Comparing electrically small folded conical and spherical helix antennas based on a genetic algorithm optimization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1585-1593, 2009.

22. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110

23. Luo, Z., X. Chen, and K. Huang, "A novel electrically-small microstrip genetic antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 513-520, 2010.

24. Kennedy, J. and R. Eberhart, "Particle swarm optimization," IEEE International Conference on Neural Networks, Piscataway, NJ, 1995.

25. Ababneh, J., M. Khodier, and N. Dib, "Synthesis of interdigital capacitors based on particle swarm optimization and artificial neural networks," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 16, 322-330, 2006.
doi:10.1002/mmce.20141

26. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, K. R. Mahmoud, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904

27. Mikki, S. M. and A. A. Kishk, "Physical theory for particle swarm optimization," Progress In Electromagnetics Research, Vol. 75, 171-207, 2007.
doi:10.2528/PIER07051502

28. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204

29. Najjar, Y., Y. Moneer, and N. Dib, "Design of optimum gain pyramidal horn with improved formulas using particle swarm optimization," nternational Journal of RF and Microwave Computer-Aided Engineering, Vol. 17, 505-511, 2007.
doi:10.1002/mmce.20245

30. Dib, N. and M. Khodier, "Design and optimization of multi-band Wilkinson power divider," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 18, 14-20, 2008.
doi:10.1002/mmce.20261

31. Shihab, M., Y. Najjar, N. Dib, and M. Khodier, "Design of non-uniform circular antenna arrays using particle swarm optimization," Journal of Electrical Engineering, Vol. 59, 216-220, 2008.

32. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

33. Huang, C. H., C. C. Chiu, C. L. Li, and K. C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904

34. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

35. Li, W. T., X. W. Shi, L. Xu, and Y. Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503

36. Lu, Z. B., A. Zhang, and X. Y. Hou, "Pattern synthesis of cylindrical conformal array by the modified particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 79, 415-426, 2008.
doi:10.2528/PIER07103004

37. Benedetti, M., G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: Ideal model and experimental validation in complex interference scenarios," Progress In Electromagnetics Research, Vol. 96, 173-191, 2009.
doi:10.2528/PIER09080904

38. Khodier, M. and M. Al-Aqeel, "Linear and circular array optimization: A study using particle swarm intelligence," Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009.
doi:10.2528/PIERB09033101

39. Lanza, M., J. R. Perez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303

40. Li, G., S. Yang, Y. Chen, and Z. Nie, "A novel electronic beam steering technique in time modulated antenna arrays," Progress In Electromagnetics Research, Vol. 97, 391-405, 2009.
doi:10.2528/PIER09072602

41. Perez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212

42. Zhang, S., S. X. Gong, and P. F. Zhang, "A modified PSO for low sidelobe concentric ring arrays synthesis with multiple constraints," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1535-1544, 2009.
doi:10.1163/156939309789476239

43. Islam, M. T., M. Moniruzzaman, N. Misran, and M. N. Shakib, "Curve fitting based particle swarm optimization for UWB patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2421-2432, 2009.

44. Zhang, L., F. Yang, and A. Z. Elsherbeni, "On the use of random variables in particle swarm optimizations: A comparative study of gaussian and uniform distributions," gaussian and uniform distributions Waves and Applications, Vol. 23, No. 5-6, 711-721, 2009.

45. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, 182-197, 2002.
doi:10.1109/4235.996017

46. OuYang, J., F. Yang, S. W. Yang, and Z. P. Nie, "The improved NSGA-II approach," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 163-172, 2008.
doi:10.1163/156939308784160703

47. Jiang, L., J. Cui, L. Shi, and X. Li, "Pareto optimal design of multilayer microwave absorbers for wide-angle incidence using genetic algorithms," IET Microwaves Antennas & Propagation, Vol. 3, 572-579, 2009.
doi:10.1049/iet-map.2008.0059

48. Storn, R. and K. Price, "Differential evolution --- A simple and efficient adaptive scheme for global optimization over continuous spaces,", Tech. Rep. TR-95-012, 1995, http://citeseer.ist.psu.edu/article/storn95differential.html..

49. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328

50. Das, S., A. Konar, and U. K. Chakraborty, "Two improved differential evolution schemes for faster global search," GECCO 2005 | Genetic and Evolutionary Computation Conference, Washington, D.C., 2005.
doi:10.1109/TEVC.2008.2009457

51. Das, S., A. Abraham, U. K. Chakraborty, and A. Konar, "Differential evolution using a neighborhood-based mutation operator," IEEE Transactions on Evolutionary Computation, Vol. 13, 526-553, 2009.
doi:10.2528/PIER08070403

52. Panduro, M. A. and C. Del Rio Bocio, "Design of beamforming networks for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER07111003

53. Shahoei, H., H. Ghafoori-Fard, and A. Rostami, "A novel design methodology of multiclad single mode optical fiber for broadband optical networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER09122306

54. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.1163/156939310791036368

55. Li, G., S. Yang, M. Huang, and Z. Nie, "Sidelobe suppression in time modulated linear arrays with unequal element spacing," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 775-783, 2010.

56. Pal, S., B. Qu, S. Das, and P. N. Suganthan, "Linear antenna array synthesis with constrained multi-objective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010.

57. Pal, S., S. Das, A. Basak, and P. N. Suganthan, "Synthesis of difference patterns for monopulse antennas with optimal combination of array-size and number of subarrays --- A multi-objective optimization approach," Progress In Electromagnetics Research B, Vol. 21, 257-280, 2010.

58. Zhang, Q., W. Liu, and H. Li, "The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances," IEEE Congress on Evolutionary Computation, Trondheim, 2009.
doi:10.1109/TEVC.2008.925798

59. Li, H. and Q. Zhang, "Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 13, 284-302, 2009.

60. Kukkonen, S. and J. Lampinen, "GDE3: The third evolution step of generalized differential evolution," Proceedings of the 2005 IEEE Congress on Evolutionary Computation, 2005.

61. Kukkonen, S. and J. Lampinen, "Performance assessment of generalized differential evolution 3 (GDE3) with a given set of problems," Proceedings of the IEEE Congress on Evolutionary Computation, 2007.
doi:10.1109/MCI.2008.919050

62. Tan, K. C., "CEC 2007 conference report," IEEE Computational Intelligence Magazine, Vol. 3, 72-73, 2008.
doi:10.1109/TAP.2009.2032100

63. Goudos, S. K. and J. N. Sahalos, "Pareto optimal microwave filter design using multiobjective differential evolution," IEEE Transactions on Antennas and Propagation, Vol. 58, 132-144, 2010.
doi:10.1007/s00158-003-0368-6

64. Marler, R. T. and J. S. Arora, "Survey of multi-objective optimization methods for engineering," Structural and Multidisciplinary Optimization, Vol. 26, 369-395, 2004.

65. Qu, B. Y. and P. N. Suganthan, "Constrained multi-objective optimization algorithm with ensemble of constraint handling methods," Engineering Optimization, In press, 2010.

66. Kukkonen, S., S. R. Jangam, and N. Chakraborti, "Solving the molecular sequence alignment problem with generalized di®erential evolution 3 (GDE3)," Proceedings of IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, 2007.

67. Kukkonen, S. and J. Lampinen, "An empirical study of control parameters for the third version of generalized differential evolution (GDE3)," Proceedings of the IEEE Congress on Evolutionary Computation, 2006.

68. Qu, B. Y. and P. N. Suganthan, "Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection," Information Sciences, In press, Uncorrected Proof, doi:10.1016/j.ins.2010.05.013, 2010.

69. Zhao, S. Z. and P. N. Suganthan, "Two-lbests based multi-objective particle swarm optimizer," Engineering Optimization, In press, 2010.