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Abstract—Antenna design problems often require the optimization
of several conflicting objectives such as gain maximization, sidelobe
level (SLL) reduction and input impedance matching. Multi-
objective Evolutionary Algorithms (MOEAs) are suitable optimization
techniques for solving such problems. An efficient algorithm is
Generalized Differential Evolution (GDE3), which is a multi-objective
extension of Differential Evolution (DE). The GDE3 algorithm
can be applied to global optimization of any engineering problem
with an arbitrary number of objective and constraint functions.
Another popular MOEA is Nondominated Sorting Genetic Algorithm-
II (NSGA-II). Both GDE3 and NSGA-II are applied to Yagi-Uda
antenna design under specified constraints. The numerical solver used
for antenna parameters calculations is SuperNEC, an object-oriented
version of the numerical electromagnetic code (NEC-2). Three different
Yagi-Uda antenna designs are considered and optimized. Pareto fronts
are produced for both algorithms. The results indicate the advantages
of this approach and the applicability of this design method.

1. INTRODUCTION

Antenna design problems have general multi-objective. Common
design objectives include gain maximization, sidelobe level reduction
and input impedance matching. The above-mentioned objectives
are often subject to constraints. A common problem that has
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been addressed in the literature is the design of Yagi-Uda antennas
that satisfy such objectives [1–15]. The optimization goal is to
find the optimum element lengths and spacings that fulfill the
design specifications. Evolutionary algorithms (EAs) such as Genetic
Algorithms (GAs) have been applied to a variety of antenna design
problems [16–23]. Yagi-Uda antennas have been studied in the
literature using different evolutionary algorithms. In [4] a binary
coded GA is used for Yagi-Uda design by a single objective approach.
This is produced from the aggregation of the objective functions using
different weight values. A Computational Intelligence (CI) method
is applied in [6]. Particle Swarm Optimization (PSO) [24] has also
been used successfully in several constrained or unconstrained antenna
design problems [25–44]. The authors in [7] optimize Yagi-Uda designs
with the single objective function that combines all objectives using
Comprehensive Learning PSO (CLPSO). In [8] Pareto GA, a multi-
objective GA, is used for the generation of the Pareto front for the
Yagi-Uda design problem.

Nondominated Sorting Genetic Algorithm-II (NSGA-II) [45] is
a popular and efficient multi-objective genetic algorithm, which has
been used in several engineering design problems [46, 47]. The major
drawback of a GA approach is the difficulty in the implementation due
to the algorithm’s inherited complexity and long computational time.

Differential evolution (DE) is a population-based stochastic
global optimization algorithm, proposed by Price and Storn [48, 49].
Several DE variants or strategies exist [50, 51]. The classical
DE algorithm has been applied to several antenna and microwave
design problems [12, 52–57]. Li and Guo presented a new Yagi-Uda
design approach using different objective functions and DE as the
optimization algorithm [12]. Their objective functions also use a
combination of the objectives and different weight factors. One of
the DE advantages is the fact that very few parameters have to be
adjusted in order to produce results. Several DE extensions for multi-
objective optimization have been proposed so far [58, 59]. Generalized
Differential Evolution (GDE3) [60] is a multi-objective DE algorithm
that has outperformed other multi-objective evolutionary algorithms
for a given set of numerical problems [61, 62]. GDE3 has been applied
to microwave filter design in [63].

In this paper, both GDE3 and NSGA-II are used for the multi-
objective Yagi-Uda design problem. We apply both to three different
Yagi-Uda antenna design cases with four, six and fifteen elements.
We consider three objective functions subject to specific constraints.
The 3D Pareto fronts produced by both algorithms are compared
and discussed. Example design cases are given and compared with
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data from the literature. This is accomplished in conjunction with
SuperNEC, a commercially available EM solver. This is an object-
oriented version of the numerical electromagnetic code (NEC-2).
SuperNEC and NEC-2 versions have also been used in the literature
for Yagi-Uda antenna design.

The novelty in our work lies in the fact that we apply both GDE3
and NSGA-II to the Yagi-Uda antenna design problem. To the best of
our knowledge this is the first time that GDE3 is applied to an antenna
design problem. The advantages of the GDE3 and NSGA-II algorithm
approachs for multi-objective antenna problems are clearly shown.

This paper is organized as follows: Section 2 describes the Yagi-
Uda design problem. The definition of the general multi-objective
optimization problem under constraints is given in Section 3. We also
present the classical DE/rand/1/bin strategy and briefly outline the
GDE3 algorithm details. Section 4 presents the numerical results for
three distinct antenna design cases. Finally the conclusion is given in
Section 5.

2. THE YAGI-UDA ANTENNA DESIGN PROBLEM

Figure 1 shows an N -element Yagi-Uda antenna. This antenna
consists of a single driven element, one reflector element and N − 2
director elements. Such a N -element Yagi-Uda antenna has 2N −
1 antenna parameters that determine the antenna characteristics,
apart from the elements’ radius. The design parameters are x̄ =
(L1, L2, . . . , Lk, . . . , LN , S1, S2, . . . , Sk, . . . , SN−1) where 2Lk is the
length of the kth element, and Sk is the spacing between the kth and
(k + 1)th elements.

The Yagi-Uda antenna design goal is to find the optimum
geometry that satisfies given performance specifications such as high
gain, Gain(x̄), low sidelobe level, SLL(x̄), and input impedance close
or equal to 50Ω. The last objective can also be defined as having a
Voltage Standing Wave Ratio (VSWR), VSWR(x̄), close to one. It
is obvious that such a problem is multi-objective. In the literature
the above objectives have been combined in a single objective function
using different weight factors [4, 7, 10, 12]. In this paper we express the
Yagi-Uda antenna design problem as the minimization of the following
objective functions:

F1(x̄) = −Gain(x̄)
F2(x̄) = SLL(x̄)
F3(x̄) = VSWR(x̄)

(1)
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Figure 1. N -element Yagi-Uda antenna.

Moreover, the design problem is subject to the following constraints:

g1(x̄) = Gain(x̄) ≥ GainL

g2(x̄) = VSWR(x̄) ≤ VSWRL
(2)

where GainL, VSWRL are the minimum allowable gain and maximum
allowable VSWR respectively. In this paper, the methods of moments-
based numerical electromagnetics code (NEC-2) has been used in the
analysis. In particular, SuperNEC, a commercially available NEC-2
version with MATLAB interface, is used.

3. MULTI-OBJECTIVE OPTIMIZATION WITH
CONSTRAINTS

The general constrained multi-objective optimization problem
(MOOP) definition is [64]:

Minimize F (x̄) = [F1(x̄), F2(x̄), . . . , Fn(x̄)] (3)
Subject to gi(x̄) ≤ 0 i = 1, 2, . . . , k (4)

F (x̄) is the vector of the objective functions, and gi are the constraint
functions. n is the number of objective functions, and k is the number
of constraint functions.

In principle, multi-objective optimization is different from single-
objective optimization. In single-objective optimization one attempts
to obtain the best solution, which is usually the global minimum or
global maximum depending on the optimization problem. In case
of multiple objectives, there may not exist one best solution (global
minimum or maximum) with respect to all objectives. In a typical
MOOP, it is often necessary to determine a set of points that all fit a
predetermined definition for an optimum. The predominant concept in
defining an optimal point is that of Pareto optimality. Pareto-optimal
solutions are those solutions (from the set of feasible solutions) that
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cannot be improved in any objective without causing degradation in
at least one other objective.

Therefore, the above problem can be solved in two ways. The first
way is to convert it to a single-objective optimization problem. This
can be accomplished by using weights for different objective functions
and penalty terms for the constraint functions. This method leads to
a single solution. The second way is to use Pareto optimization, which
means to optimize all the objectives simultaneously giving them equal
importance. If none of the objective function values can be further
improved without impairing the value of at least one objective for a
given solution then this solution is Pareto-optimal and belongs to the
set of non-dominated solutions which is called Pareto front. The main
goal is to find some points (solutions) that belong to the Pareto front.
From this set of non-dominated solutions, optimal antenna designs that
provide a suitable compromise between the objectives for the desired
constraints can be realized. More details about constraint handling in
MOEAs can be found in a recent paper [65].

A multi-objective evolutionary algorithm can be used to solve
this problem. Multi-objective evolutionary algorithms have gained
popularity and have been used extensively over the last years in several
design problems in electromagnetics. EAs use vectors to model the
possible solutions. In order to distinguish the members of the non-
dominated set from the population members we refer to the first as
solutions and the second ones as vectors. The definitions of dominance
relations between two vectors (or individuals of the population) are
given below. The weak dominance ¹ relation between two vectors x̄1,
x̄2 in the search space is defined as [60]:

x̄1 weakly dominates x̄2 x̄1¹x̄2 iff ∀i : Fi(x̄1) ≤ Fi(x̄2) (5)

while the dominance ≺ relation is defined as:

x̄1 dominates x̄2 x̄1 ≺ x̄2 iff x̄1¹x̄2 ∧ ∃i : Fi(x̄1) < Fi(x̄2) (6)

The above relations can be extended to include constraint dominance
≺c [60]:

x̄1 constraint-dominates x̄2 x̄1 ≺c x̄2 when any of the following
conditions are true:

1) x̄1 belongs to the feasible design space, and x̄2 is infeasible.
2) x̄1, x̄2 are both infeasible, but x̄1 dominates x̄2 in constraint

function space.
3) x̄1, x̄2 both belong the feasible design space, but x̄1 dominates x̄2

in objective function space.
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3.1. Differential Evolution

A population in DE consists of NP vectors x̄iG, i = 1, 2, . . . , NP ,
where G is the generation number. The population is initialized
randomly from a uniform distribution. Each D-dimensional vector
represents a possible solution. The initial population evolves in each
generation with the use of three operators: Mutation, crossover and
selection. Depending on the form of these operators several DE
variants or strategies exist in the literature [24, 25]. The most popular
is the one known as DE/rand/1/bin strategy. In this strategy a mutant
vector v̄ for every target vector x̄iG is computed by:

v̄i,G+1 = x̄r1,G + F (x̄r2,G − x̄r3,G) , r1 6= r2 6= r3 (7)

where r1, r2, r3 are randomly chosen indices from the population,
and F is a mutation control parameter. After mutation the
crossover operator is applied to generate a trial vector ūi,G+1 =
(u1i,G+1, u2i,G+1, . . . , uDi,G+1) whose coordinates are given by:

uji,G+1 =
{

vji,G+1, if rand(j) ≤ CR or j = rn(i)
xji,G, if rand(j) > CR and j 6= rn(i)

(8)

where j = 1, 2, . . . , D, rand(j) is a number from a uniform random
distribution from the space [0, 1], rn(i) a randomly chosen index from
(1, 2, . . . , D) and CR the crossover constant from the space [0, 1]. DE
uses a greedy selection operator. According to this selection scheme
for minimization problems:

x̄i,G+1 =
{

ūi,G+1, if f(ūi,G+1) < f(x̄i,G)
x̄i,G, otherwise

(9)

where f(ūi,G+1), f(x̄i,G) are the fitness values of the trial and the
old vector respectively. Therefore, the newly found trial vector ūi,G+1

replaces the old vector x̄i,G only when it produces a lower objective
function value than the old one. Otherwise, the old vector remains in
the next generation. The stopping criterion for the DE is usually the
generation number or the number of objective function evaluations.

3.2. Generalized Differential Evolution (GDE3)

Multi-objective DE algorithms extend the classical DE algorithm for
solving MOOP. Generalized Differential Evolution (GDE3) introduced
in [60] can solve problems that have n objectives and k constraint
functions. Recently, GDE3 has outperformed other evolutionary
algorithms in numerical benchmark problems [61, 62]. It has been
successfully applied to the molecular sequence alignment problem [66]
and to microwave filters design [63]. To the best of the authors’
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knowledge this is the first time that the GDE3 algorithm is applied
to an antenna design problem. The algorithm uses the concept of
Crowding Distance (CD), which approximates the crowdedness of a
vector in its non-dominated set as NSGA-II [45]. The vectors are
sorted based on non-dominance and crowdedness. A basic difference
exists between NSGA-II and GDE3 regarding the population size after
a generation. In NSGA-II the population size after a generation is
increased to 2NP . Then non-dominated ranking is applied, and NP
non-dominated vectors are selected. In GDE3 after a generation the
population size is NP +m, where m ∈ [0, NP ], because the population
size is increased only when the trial ui,G+1 and old vector xi,G are
feasible and do not dominate each other. Therefore, non-dominated
ranking is applied to NP + m population size, which can be less in
general than 2NP , thus resulting in less computational time than
NSGA-II [60].

The GDE3 algorithm is outlined below:

1) Initialize random population of NP individuals. Set m = 0.
2) Evaluate objective function and constraint function values for

every vector of the population.
3) Apply the mutation and crossover operators according to (7) and

(8) and create a trial vector ui,G+1.
4) Evaluate objective function and constraint function values for the

trial vector.
5) Apply the selection operator according to the following criterion:

xi,G+1 =
{

ui,G+1, if ui,G+1¹c xi,G

xi,G, otherwise
(10)

6) Set m = m + 1, xNP+m,G+1 = ui,G+1

if ∀j : gj(ui,G+1) ≤ 0 ∧ xi,G+1 == xi,G ∧ xi,G 6≺ui,G+1 (11)

7) Apply non-dominated ranking to NP + m vectors. Select NP
non-dominated vectors and set m = 0.

8) Repeat step 3 until the maximum number of generations Gmax is
reached.

GDE3 variations with different DE strategies can be easily created
simply by using different equations for crossover and mutation other
than (7) and (8). More details about the GDE3 algorithm can be found
in [60].
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4. NUMERICAL RESULTS

All algorithms are executed 20 times. The best results are compared.
All algorithms are compiled using the same compiler (Borland C++
Builder 5.0) in a PC with Intel Core 2 Duo E8500 at 3.16 GHz with 4GB
RAM running Windows XP. The population size is set to 40 for both
algorithms in all cases. The iteration number is set to 1000 for the cases
of four and six elements, while for the 15-element Yagi-Uda is set to
2000. The control parameters chosen for GDE3 are according to [61, 67]
for solving problems with three objectives F = 0.2, CR = 0.2. These
values have been verified with several trials. In NSGA-II the crossover
and mutation probabilities are set equal to 0.9 and 0.1, respectively.

The design cases selected are those that appear in the literature
in order to compare results [4, 6–8, 12]. The first design case is that
of a four-element Yagi-Uda antenna. For this case it is GainL =
9dBi, VSWRL = 2. The dipole radius is set to 0.00225λ as in the
literature [4, 6–8, 12]. The 3D Pareto fronts found by GDE3 and
NSGA-II are given in Figures 2 and 3, respectively. Each point of the
Pareto front denotes a feasible design solution with three coordinates.
We notice that both algorithms produce similar results. Table 1 has
designs taken from the literature [4, 6, 7]. In Table 2 we present three
different example cases from the Pareto front found by GDE3. The
radiation patterns for these cases are plotted in Figure 4. As expected,
no single optimum solution exists. Each of the example cases is better
than the others in one objective. Design 1 presents a lower gain than
the others but its VSWR is closer to one than others. One may notice
that it has a higher gain value than the case of [7]. Design 2 has a high
gain of 9.96 dBi and a relative low SLL of−15.00 dB. It outperforms the
design from [6] in terms of gain value. The third example case obtained
by GDE3 presents almost perfect impedance matching to 50 Ω and has
the lowest SLL of all. The tradeoff for this case is the lowest gain
value. The average execution time for GDE3 and NSGA-II is 1546.34
and 1618.73 seconds respectively. For this case the total number of
objective function evaluations is 40,000 compared with 200,000 from [8]
using the Pareto GA.

The next example is also common in literature [4, 7, 8]. It is that of
a six-element Yagi-Uda antenna. For this case we set GainL = 11dBi,
VSWRL = 2 and the dipole radius to 0.003369λ. The Pareto fronts
for this case are shown in Figures 5 and 6 for GDE3 and NSGA-II,
respectively. Table 3 holds results obtained from the literature using
GA, Pareto GA and CLSPO. Three example cases that were found
by GDE3 are reported in Table 4. Figure 7 depicts the corresponding
radiation patterns. The results obtained by GDE3 have in average
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lower SLL values than the those found by NSGA-II. In terms of gain
and VSWR both algorithms produce similar results. The three designs
found by GDE3 have high gain values. Design 1 outperforms the
designs from [4] and [7] in terms of gain and sidelobe level values.
Design 2 presents the highest gain (13 dBi). For this case there is a
tradeoff between gain and VSWR value. Design 3 provides the lowest
SLL (−15.50 dB) of all but the VSWR deteriorates at the value of 1.72.
The average execution time for GDE3 and NSGA-II is 1790.63 and
1804.62 seconds respectively. The total number of objective function
evaluations is again 40,000. In [8] for the six-element case a total
number of 300,000 objective is required.

Figure 2. Pareto front for four-
element Yagi-Uda antenna found
by GDE3.

Figure 3. Pareto front for four-
element Yagi-Uda antenna found
by GDE3.

Table 1. Design parameters and results obtained from the literature
for four-element Yagi-Uda antenna.

GA [4] CI [6] CLPSO [7]
Element L(λ) S(λ) L(λ) S(λ) L(λ) S(λ)

1 0.245 - 0.238 - 0.238 -
2 0.236 0.283 0.237 0.288 0.233 0.311
3 0.221 0.179 0.220 0.200 0.217 0.205
4 0.212 0.279 0.212 0.265 0.206 0.279

Gain (dBi) 9.84 9.83 9.44
Z (Ω) 38.5− j2.3 46.19 + j8.12 49.56 + j0.11
VSWR 1.31 1.20 1.01

SLL (dB) −14.50 −15.1 −15.02
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Table 2. Design parameters and results found by GDE3 for four-
element Yagi-Uda antenna.

1 2 3
Element L(λ) S(λ) L(λ) S(λ) L(λ) S(λ)

1 0.243 - 0.236 - 0.248 -
2 0.235 0.266 0.232 0.294 0.237 0.251
3 0.221 0.175 0.220 0.220 0.219 0.156
4 0.211 0.248 0.211 0.268 0.205 0.272

Gain (dBi) 9.56 9.96 9.17
Z (Ω) 49.59− j0.11 41.80 + j0.54 48.56− j0.06
VSWR 1.01 1.20 1.03

SLL (dB) −15.02 −15.00 −17.02

Figure 4. Radiation patterns of four-element Yagi-Uda design cases
found by GDE3.

Figure 5. Pareto front for six-
element Yagi-Uda antenna found
by GDE3.

Figure 6. Pareto front for six-
element Yagi-Uda antenna found
by NSGA-II.
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Figure 7. Radiation patterns of six-element Yagi-Uda design cases
found by GDE3.

Figure 8. Pareto front for
fifteen-element Yagi-Uda antenna
found by GDE3.

Figure 9. Pareto front for
fifteen-element Yagi-Uda antenna
found by NSGA-II.

Figure 10. Radiation patterns of fifteen-element Yagi-Uda design
cases found by GDE3.
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Table 3. Design parameters and results obtained from the literature
for six-element Yagi-Uda antenna.

GA [4] Pareto GA [8] CLPSO [7]
Element L(λ) S(λ) L(λ) S(λ) L(λ) S(λ)

1 0.239 - 0.2394 - 0.236 -
2 0.225 0.182 0.2339 0.2853 0.231 0.257
3 0.224 0.152 0.2214 0.2386 0.221 0.192
4 0.217 0.229 0.2167 0.2908 0.215 0.296
5 0.211 0.435 0.2065 0.3759 0.211 0.334
6 0.220 0.272 0.2049 0.3965 0.214 0.345

Gain (dBi) 12.58 12.9 12.65
Z (Ω) 49.64− j5.08 N/A 50.013− j0.013
VSWR 1.11 1.47 1.0004

SLL (dB) −10.4 −15.0 −9.6

Table 4. Design parameters and results found by GDE3 for six-
element Yagi-Uda antenna.

1 2 3
Element L(λ) S(λ) L(λ) S(λ) L(λ) S(λ)

1 0.241 - 0.240 - 0.238 -
2 0.222 0.128 0.225 0.329 0.230 0.295
3 0.221 0.104 0.219 0.292 0.221 0.238
4 0.217 0.268 0.215 0.303 0.214 0.307
5 0.213 0.361 0.208 0.383 0.206 0.383
6 0.215 0.342 0.213 0.386 0.208 0.393

Gain (dBi) 12.72 13.00 12.88
Z (Ω) 49.67− j5.49 30.99− j3.22 29.16 + j1.97
VSWR 1.12 1.62 1.72

SLL (dB) −12.02 −12.09 −15.50

The final example is that of a fifteen-element Yagi-Uda antenna.
We have selected for this case GainL = 15 dBi, VSWRL = 2. We set
the dipole radius to 0.003369λ. Figure 8 and Figure 9 have the Pareto
fronts produced by GDE3 and NGSA-II respectively. The GDE3
has found solutions with higher gain values. The design parameters
for solutions reported in the literature are given in Table 5 [4, 7, 12].
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Table 6 holds the design parameters for three example design cases
found by GDE3. The radiation patterns for these are depicted in
Figure 10.

Design 1 presents a better performance than all designs cited in
the literature in terms of sidelobe level. Also it presents a higher
gain value than those from [4, 7]. Design 2 provides the highest gain
value among all designs from both tables. It presents also a low
VSWR value of 1.10, and the SLL is lower than those reported in the
literature. For the parameters of design 3 a lower VSWR is achieved
by the tradeoff in gain. The SLL is lower than the designs found
in the literature. The average execution time for GDE3 and NSGA-
II is 6451.45 and 6466.50 seconds respectively. The total number
of objective function evaluations is 80,000. For this case of fifteen-

Table 5. Design parameters and results obtained from the literature
for fifteen-element Yagi-Uda antenna.

GA [4] CLPSO [7] DE [12]
Element L(λ) S(λ) L(λ) S(λ) L(λ) S(λ)

1 0.236 - 0.239 - 0.236 -
2 0.230 0.249 0.226 0.168 0.229 0.293
3 0.221 0.155 0.222 0.171 0.222 0.195
4 0.205 0.185 0.216 0.260 0.217 0.307
5 0.216 0.191 0.210 0.311 0.214 0.346
6 0.210 0.252 0.201 0.216 0.206 0.450
7 0.210 0.442 0.210 0.262 0.207 0.395
8 0.189 0.431 0.205 0.378 0.203 0.430
9 0.191 0.362 0.197 0.336 0.204 0.520
10 0.200 0.205 0.204 0.376 0.204 0.386
11 0.204 0.268 0.199 0.324 0.189 0.439
12 0.215 0.414 0.190 0.406 0.199 0.556
13 0.174 0.197 0.197 0.210 0.209 0.439
14 0.199 0.130 0.203 0.328 0.202 0.433
15 0.204 0.362 0.202 0.369 0.205 0.399

Gain (dBi) 15.41 16.40 17.24
Z (Ω) 50.01− j0.5 50.09 + j0.15 53.2 + j4.0
VSWR 1.01 1.0035 1.10

SLL (dB) −10.31 −13.03 −10.64
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Table 6. Design parameters and results found by GDE3 for fifteen-
element Yagi-Uda antenna.

1 2 3
Element L(λ) S(λ) L(λ) S(λ) L(λ) S(λ)

1 0.237 - 0.239 - 0.237 -
2 0.227 0.204 0.219 0.210 0.223 0.208
3 0.223 0.149 0.226 0.124 0.220 0.132
4 0.218 0.285 0.218 0.256 0.218 0.279
5 0.213 0.327 0.213 0.337 0.215 0.303
6 0.210 0.433 0.208 0.435 0.172 0.271
7 0.206 0.393 0.207 0.438 0.206 0.160
8 0.205 0.401 0.207 0.407 0.203 0.386
9 0.194 0.449 0.205 0.402 0.195 0.285
10 0.192 0.335 0.174 0.328 0.195 0.319
11 0.191 0.307 0.201 0.320 0.199 0.429
12 0.192 0.448 0.202 0.377 0.197 0.447
13 0.189 0.432 0.200 0.437 0.200 0.449
14 0.183 0.446 0.204 0.438 0.212 0.356
15 0.202 0.448 0.208 0.434 0.168 0.303

Gain (dBi) 16.88 17.58 16.46
Z (Ω) 45.85− j7.20 46.11− j0.71 47.84− j0.70
VSWR 1.19 1.10 1.05

SLL (dB) −20.29 −13.62 −15.93

element Yagi-Uda design we have not found in the literature a multi-
objective approach that optimizes all three objectives. In [8] 400,000
objective function evaluations are reported for an eight and twelve-
element antenna.

5. CONCLUSION

Multi-objective evolutionary algorithms can be used successfully for
Yagi-Uda antenna design. A novel antenna design method using
the GDE3 algorithm has been presented. GDE3 is a new multi-
objective DE algorithm, which has been compared against NSGA-II.
Both algorithms are quite efficient in producing the Pareto front for
different antenna design cases. For the Yagi-Uda design case GDE3
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can produce similar or slightly better results than NGSA-II for the
same population size and the same number of generations. One of the
GDE3 advantages is the fact that it requires less computational load
than NSGA-II. This is due to the fact that the population size which
is ranked after a generation is usually less than the one required by
NSGA-II. The antenna design cases found by GDE3 outperform those
reported in the literature. The biggest advantage of using GDE3 for
Yagi-Uda design is probably the fact that it can efficiently handle this
tri-objective problem subject to any number of design constraints using
a multi-objective approach. It must also be pointed out that GDE3
and NSGA-II require less number of objective function evaluations for
the same Yagi-Uda design than the Pareto GA [8]. Both algorithms
can be easily applied to other microwave and antenna design problems,
and they can also be used in conjunction with an EM solver software.
In our future work we plan to explore the applicability of other
state-of-the-art MOEAs to antenna and microwave design problems
such as the MOEA/D [59], multi-objective evolutionary algorithms
based on summation of normalized objective values and diversified
selection (SNOV-DS) [68] and the recently proposed new MOPSO [69].
The application of multi-objective evolutionary algorithms to antenna
design problems provides researchers with a set of solutions. Then
the most suitable design case for given antenna specifications can be
selected.
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