Vol. 19
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-01-19
Frequency Dispersion Limits Resolution in Veselago Lens
By
Progress In Electromagnetics Research B, Vol. 19, 233-261, 2010
Abstract
The properties of a lossless Veselago lens is examined when the material parameters epsilon and mu are frequency dispersive. A complete solution is presented that is based on the use of Fourier transforms in the frequency domain and is obtained in terms of the residues at the poles and branch cut integrals. It is shown that for an incident field with a finite frequency spectrum the excited evanescent field consists of resonant even and odd surface wave modes that do not grow exponentially within the slab. For a lossless slab and a sinusoidal signal of finite duration, at a single frequency corresponding to that where the relative values of epsilon and mu equal -1, Pendry's solution is obtained along with excited surface wave modes and other interfering waves that makes it impossible to obtain a coherent reconstruction of the spatial spectrum of the object field at the image plane. If the slab material is lossy the excited interfering surface wave modes will decay away in a relatively short time interval, but as shown by other investigators the resolution of the lens will be reduced in a very substantial way if the losses are moderate to large.
Citation
Robert Collin, "Frequency Dispersion Limits Resolution in Veselago Lens," Progress In Electromagnetics Research B, Vol. 19, 233-261, 2010.
doi:10.2528/PIERB09120904
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

3. Smith, D. R., D. Schwrig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Letters, Vol. 82, No. 10, 1506-1508, Mar. 2003.
doi:10.1063/1.1554779

4. Merlin, R., "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett., Vol. 84, 1290-1292, Feb. 2004. See also Errattum, Appl. Phys. Lett., Vol. 85, No. 11, Sep. 2004.
doi:10.1063/1.1650548

5. Milton, G. W., N. A. P. Nicolae, R. C. McPhedran, and V. A. Podolskiy, "A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous resonances localized resonance," Proc. Roy. Soc., Vol. 461, 3999-4034, Oct. 2005.

6. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, 2008.

7. Ruppin, R., "Surface polaritons of a left-handed material slab," J. Phys.: Cond. Matter, Vol. 13, 1811-1818, 2001.
doi:10.1088/0953-8984/13/9/304

8. Haldane, F. D., "Electromagnetic surface modes at interfaces with negative refractive index make a `Not-quite-perfect' lens,", http://arxiv.org/abs/condmat/0206420.
doi:10.1103/PhysRevLett.90.077401

9. Gomez-Santos, G., "Universal features of the time evolution of evanescent modes in a left-handed perfect lens," Phys. Rev. Lett., Vol. 90, No. 7, Feb. 2003.

10. Grbic, A., "Left-handed lens metricssium on Electromagnetic Theory (EMTS)," International Sympo, Ottawa Canada, Jul. 26-28, 2007. http://www.ursi.org/B/EMTS 2007/O4-18/2-Grbic118.pdf.

11. Yaghjian, A. D. and T. B. Hansen, "Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs," Phys. Rev. E --- Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 73, 046608, 2006.
doi:10.1109/TAP.2004.836393

12. De Wolf, D. A., "Transmission of evanescent wave modes through a slab of DNG material," IEEE Trans. Antennas Propagat., Vol. 53, 270-274, Jan. 2005.
doi:10.1109/TAP.2005.861517

13. De Wolf, D. A., "Transmission of evanescent wave modes through a slab of DNG material II," IEEE Trans. Antennas Propagat., Vol. 54, 263-264, Jan. 2006.
doi:10.2528/PIER04032602

14. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
doi:10.1109/TMTT.2002.805197

15. Eleftheriades, G. V., A. K. Tyler, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 50, 2702-2712, Dec. 2002.
doi:10.1109/TMTT.2003.820162

16. Grbic, A. and G. Eleftheriades, "Negative refraction, growing evanescent waves, and sub-diffraction imaging in loadedevanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 12, 2297-2305, Dec. 2003.
doi:10.1109/MAP.2007.379612

17. Eleftheriades, G. V., "Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, Apr. 2007.
doi:10.1109/TMTT.2004.825703

18. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory and Tech., Vol. 52, No. 4, 1252-1263, Apr. 2004.

19. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, 1991.

20. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press Series on Electromagnetic Waves, IEEE Press, 1995.

21. Felson, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice Hall, Engelwood Cliffs, 1973.

22. Papoulis, A., Systems and Transforms with Applications to Optics, McGraw-Hill, 1968.

23. Gralac, B. and A. Tip, "Macroscopic Maxwell's equations and negative index materials,", To be published, Available at http://arxiv.org/abs/0901.0187v3.

24. Born, M. and E. Wolf, Principles of Optics, 2nd Ed., The Macmillan Co., 1964.

25. Stratton, J. A., Electromagnetic Theory, Ch. 5, McGraw-Hill, 1941.