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FREQUENCY DISPERSION LIMITS RESOLUTION IN
VESELAGO LENS

R. E. Collin

1041 West Mill Dr., Highland Hts. OH 44143, USA

Abstract—The properties of a lossless Veselago lens is examined when
the material parameters epsilon and mu are frequency dispersive. A
complete solution is presented that is based on the use of Fourier
transforms in the frequency domain and is obtained in terms of the
residues at the poles and branch cut integrals. It is shown that for an
incident field with a finite frequency spectrum the excited evanescent
field consists of resonant even and odd surface wave modes that do not
grow exponentially within the slab. For a lossless slab and a sinusoidal
signal of finite duration, at a single frequency corresponding to that
where the relative values of epsilon and mu equal −1, Pendry’s solution
is obtained along with excited surface wave modes and other interfering
waves that makes it impossible to obtain a coherent reconstruction
of the spatial spectrum of the object field at the image plane. If
the slab material is lossy the excited interfering surface wave modes
will decay away in a relatively short time interval, but as shown by
other investigators the resolution of the lens will be reduced in a very
substantial way if the losses are moderate to large.

1. INTRODUCTION

In 1968 Veselago introduced the concept of a material having
simultaneous negative values of epsilon and mu. He discussed a number
of properties of such media, such as negative refraction, left handed
wave solutions, a flat lens configuration, among other features [1].
Veselago pointed out that any medium with negative mu or epsilon
would have to be frequency dispersive in order for the field energy to
be positive. Many years later Pendry considered a flat slab lens made
from material with the relative values of both epsilon and mu equal to
−1, [2]. He showed that a propagating plane wave incident upon this
lens would be perfectly matched at the interface, i.e., the reflection
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coefficient would be zero and the transmission coefficient through the
slab would equal 1 whenever the relative values of epsilon and mu
were both equal to −1. In the case of an incident evanescent wave
the reflection and transmission coefficients become infinite when the
index of refraction becomes equal to −1 so the standard method of
solving for the reflected and transmitted waves can not be used. In
order to overcome this difficulty Pendry began with relative values of
epsilon and mu different from −1 and expressed the solution as a series
of multiple reflected waves within the slab. This series is a geometric
series which was summed and then the limit was taken as the relative
values of epsilon and mu approached −1. The result showed that the
overall transmission through the slab for the evanescent waves was
in the form of a single exponentially growing wave within the slab.
This was a somewhat surprising result but was generally considered to
be a correct result by many people carrying out research on negative
index of refraction media. It is interesting to note that in Pendry’s
original work he assumed the presence of a decaying wave in the slab
but after summing the multiple reflected wave series and letting the
relative values of epsilon and mu become equal to −1 this part of the
solution was cancelled out. At the frequency for which the index of
refraction is −1 in the slab and 1 outside the slab the evanescent wave
attenuation constants are the same in both media. Consequently the
exponential growth of the waves within the slab compensates for the
exponential decay outside the slab and results in the amplitude of all
evanescent waves to be restored to their original values at the image
plane as illustrated in Fig. 1. From this result Pendry concludes that
such a lens would reproduce the original scene on the object plane with
infinite resolution at the image plane.

Figure 1. Electric field distribution for Pendrys solution for an
evanescent incident wave on a slab with an index of refraction equal to
−1.
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There is a flaw in Pendry’s method that was overlooked, which
is that as the relative values of epsilon and mu become quite close to
−1 in value the magnitude of the ratio of successive terms in Pendry’s
multiple reflected wave series become greater than 1 and the geometric
series does not converge. However, there is a mathematical solution
that satisfies the boundary conditions and which is consistent with
Pendry’s solution for a lossless lens. The final result he obtained may
be easily demonstrated in the following way. Assume that the relative
values of epsilon and mu are equal to −1 and let an exponentially
decaying evanescent wave be incident on the first interface between
free space and the negative index of refraction medium. It is then easy
to show that the boundary conditions on the tangential electric and
magnetic fields at the first interface can be satisfied by assuming that
in the negative index of refraction slab the field consists of a single
exponentially growing wave. Likewise it can be shown that at the
output interface the boundary conditions can be satisfied by assuming
an exponentially decaying wave on the output side, which confirms
Pendry’s result. These three waves together will satisfy the boundary
conditions that require the tangential electric and magnetic fields to
be continuous across the two interfaces. This solution is a solution
of the source free Maxwell’s equations and must be a resonant mode
even though the evanescent wave on the input side was the incident
evanescent wave in Pendry’s solution.

Pendry’s solution requires the field to be a steady state time
harmonic oscillation of infinite duration, at the frequency for which the
index of refraction is exactly equal to −1. If we view this solution as a
resonant mode then it is not a proper physical solution since the field
grows exponentially away from both sides of the first interface. For a
single interface a surface wave that decays away from both sides of the
interface can also be supported by the surface. This is a proper physical
mode solution. A proper physical solution must vary in a continuous
manner when the physical parameters that characterize the problem
change. Pendry’s solution fails this test as can be seen by noting
that if the relative values of epsilon, mu, or the index of refraction
change from the exact value of −1 the boundary conditions are no
longer satisfied because the tangential magnetic field will no longer be
continuous across each interface, the latter requiring the attenuation
constants to be the same in the slab as in the surrounding medium, and
the relative value of mu to equal −1. Thus any change in epsilon and
mu, even the addition of small loss, will cause a change in the solution
such that the tangential magnetic field is no longer continuous across
the interfaces. If Pendry’s solution is viewed as a resonant mode then it
also fails the uniqueness test for field solutions since the field becomes
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infinite at infinity.
When the relative values of epsilon and mu do not equal −1 then

the transfer function obtained by Pendry before the limit of setting
the relative values of epsilon and mu equal to −1 must be used.
This transfer function, which describes the electric field at the output
interface of the lens in terms of the field at the input interface, has the
following form for an incident evanescent wave [2]

τr(kx, ω) =
tt′e−αd

1− r′2e−2αd
=

4µα0αe−αd

(µα0 + α)2 − (µα0 − α)2e−2αd

where µ and ε are the relative values of the permeability and
permittivity of the lens slab material. The attenuation constants in
the free space region and within the lens are given by α0 =

√
k2

x − k2
0,

α =
√

k2
x − µεk2

0 where kx is the transverse wave number of the
evanescent wave, and k0=ω/c is the free space wave number. When
the relative values of epsilon and mu become equal to −1 then τr = eαd

which cancels the corresponding decay e−α0d in the field between the
object plane and the first interface of the lens and that from the output
interface of the lens to the image plane. This results in the amplitudes
of all evanescent waves to be restored at the image plane and results
in a lens with perfect resolution. However, the field within the slab
becomes divergent for large values of the transverse wave number. This
divergent behavior raises some questions as to whether or not Pendry’s
solution is a valid physical solution. In our analysis we arrive at the
conclusion that it is not a complete solution by itself.

Several authors have derived modifications to Pendry’s transfer
function given above by introducing small losses in epsilon and mu or
by considering a small perturbation in epsilon or mu away from the
value of −1 for large values of the transverse wave number [3–14]. This
has the effect of eliminating the field divergence problem but reduces
the resolving power of the lens and thus limiting the resolution that
can be obtained.

Various authors have recognized that the negative index slab can
support resonant surface wave modes and that these modes play an
important role in the behavior of the lens [3–13]. The excitation of
these resonant surface wave modes do not appear in the strict steady
state solutions. Gómez-Santos considered an input sinusoidal signal
that was turned on at t = 0 and turned off at t = τ [9]. He
proposed modeling the lens as two coupled mechanical resonators,
with resonant frequencies corresponding to those of the even and odd
surface wave modes that can exist on the negative index slab. The
resonant frequencies are well separated for small values of the wave
attenuation constants which occur for small values of kx, but merge
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together as kx approaches infinity. From the solution to the coupled
oscillator problem Gómez-Santos showed that the length of time for the
oscillations to build up to the steady state value was proportional to the
reciprocal of the resonant frequency separation ∆ω of the two modes.
In the limit the amplitude of the response of the second oscillator,
corresponding to the output interface of the lens, was found to be
proportional to (∆ωt)2e−2αd in the initial phase of the build up of
the oscillations. Thus in the limit of infinitely large transverse wave
numbers the oscillations would never build up to infinite values in any
finite time interval. This mechanism was proposed by Gómez-Santos
to eliminate the singularity in Pendry’s solution. On this basis he
concluded that Pendry’s solution was acceptable.

Grbic also considered a time domain solution and included
frequency dispersion in epsilon and mu [10]. He chose a cosinusoidal
input signal of semi-infinite duration which had a frequency spectrum
proportional to 1/(ω2 − ω2

0) where ω0 is the frequency at which the
relative values of epsilon and mu equal −1. He obtained a result
similar to that obtained by Gómez-Santos. Neither Grbic or Gómez-
Santos include the branch cut integrals that occur in the inverse Fourier
or Laplace transform evaluations. A similar input signal, but with a
finite duration, was considered by Yagjian and Hansen [11]. They
also analyzed the effect of losses on the resolving power of the lens.
For the case of a sinusoidal signal turned on at t = −t0 and turned
off at t = t0 their spectral function given by Eq. (36) in their paper
should have been expressed as a spectral function that is applicable for
(L+2d)/c− t0 < t < t0 +(L+2d)/c and a spectral function applicable
for t > (L+2d)/c+ t0, i.e., causality requires the output to be delayed
by the propagation time delay. In the first time interval the spectral
function exhibits poles at ω = ±ω0 and would produce a dominant
wave at the frequency ω0, corresponding to Pendry’s solution, plus
the excitation of the even and odd surface waves that would interfere
with the dominant wave. After the signal is turned off their spectral
function as given by their Eq. (36) is applicable. We will also analyze
the problem using a sinusoidal signal of finite duration but evaluate the
inverse Fourier transform using the residues at the poles plus branch
cut integrals, and thus obtain a more complete solution.

An approximate solution to the lens problem when the dispersion
obeys the Smith-Kroll model was developed by de Wolf [12, 13]. He
found approximate expressions for the resonant surface wave modes but
did not identify these as resonant surface wave modes. He considered
the input signal spectrum to be a narrow band of frequencies with finite
density and obtained an expression for the slab transmission coefficient
by integrating the transmission coefficient over a narrow band of
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frequencies, but did not evaluate the solution as an inverse Fourier
transform which would have included a ejωt time factor. Thus his
solution is not in the form of resonant surface wave modes. However,
he did find from his approximate solution that for a narrow band signal
spectrum the field in a slab lens did not grow exponentially for slabs
with a thickness greater than some minimum value, which typically
was very small.Chew has also examined this problem but he uses a
strict steady state solution and thus encounters wave solutions that
diverge [14]. However, by introducing loss along the lines other earlier
investigators followed the field divergences can be eliminated. There
have been a number of studies of other lens configurations that depart
from the specific configuration considered by Pendry but these will not
be reviewed here.

Several researchers have built periodic structures to simulate a
negative index of refraction medium and constructed flat slab lenses
and attempted to demonstrate super resolution, but with only limited
success [15–18].

Even though a number of authors have expressed the view that the
resonant surface wave modes will play an important role in the behavior
of Veselago’s lens it does not appear that anyone has expressed the
complete field solution for Veselago’s lens, and explicitly including the
excitation of the even and odd resonant surface wave modes within
the slab as well as exterior to the slab, probably because they do
not appear directly in a steady state solution when epsilon and mu
are not frequency dependent. The fact that for Pendry’s solution the
boundary conditions at the first interface can be satisfied by a single
exponentially growing wave on each of the two sides of the interface
is a troubling result because we are at liberty to assume that for
the slab of negative index of refraction media the thickness of the
slab can be made arbitrarily large and we then have the capability
to create an electric field with enormous intensity. This can hardly
be accepted as being a valid physical result. The original solution
for the transmission factor or transfer function from the object plane
through the negative index of refraction slab and to the image plane
was dependent on the relative values of epsilon and mu being exactly
equal to −1. Furthermore, the incident field was assumed to be a
steady state single frequency oscillation. The operation of the lens
depended critically on the excitation of a resonant mode that was
intimately tied to the two interfaces of the lens. The assumption of
a strict steady state solution is the primary cause of the divergence
associated with Pendry’s solution when the losses are set equal to
zero. Clearly an input signal of semi-infinite or infinite duration is
non-physical.
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In view of the above considerations we were led us to consider the
effect of frequency dispersion, which as Veselago stated, is necessary.
We therefore examined a simple model were both epsilon and mu were
considered to have a simple dependence on frequency, as was used
for an example in Veselago’s paper [1]. In the analysis given below
we first consider the problem of a single interface which is found to
support a resonant surface wave mode for which the field decays in an
exponential manner away from both sides of the interface. The results
of this analysis showed that at the frequency ωe where the relative
values of epsilon and mu become equal to −1 a pole in the frequency
response of a single interface occurs. This leads to a discrete mode with
frequency ωe and which undergoes exponential decay, not growth, in
the negative index of refraction medium. If the incident field consists of
a sinusoidal signal at the frequency ωe for which the relative values of
epsilon and mu are equal to −1, and of finite duration, then a double
pole occurs in the response function for which the time response is
proportional to tejωet. Thus this example suggests that if frequency
dispersion is taken into account the dilemma of a single exponentially
growing wave on the output side of the first interface in Veselago’s lens
will be eliminated.

We next consider the two interface problem on which a pair of
resonant coupled surface wave modes are excited. When the incident
field has a continuous frequency spectrum with finite density our
solution results in a set of proper surface waves or resonant modes
on the slab and do not require the introduction of loss or small
perturbations in epsilon or mu in order to avoid the short transverse
wavelength divergence. This leads to a proper solution for the Veselago
lens, but this solution does not support the exponential growth of the
evanescent waves within the slab and thus for this type of incident
field no super resolution is possible. We also consider an incident field
consisting of a single discrete frequency sinusoidal oscillation of finite
duration. For this case the field at the image plane is found to consist
of a driven mode, corresponding to Pendry’s solution, at the frequency
of the incident field along with the resonant even and odd surface wave
modes, plus fields with continuous frequency spectra that arise from
branch cut integrals. For the lossless slab the unavoidable excitation
of the even and odd surface wave modes at their resonant frequencies
produces interference at the image plane that makes it difficult, if
at all even possible, to coherently reconstruct the amplitudes of the
evanescent waves at the image plane. We also found that a continuous
spectrum of interfering propagating waves would also be produced at
the image plane and which will cause blurring of the image. This
solution is based on the evaluation of the excitation of the resonant
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surface wave modes in terms of the residues at the poles and sheds new
insight into the operation of the flat lens. When the excited surface
waves are included as part of the solution the divergence of the field
for large transverse wave numbers is eliminated.

The existence of surface wave poles can be accounted for by using
standard Fourier or Laplace transform techniques and thus obtaining
finite responses in terms of the residues at the poles. There is a very
large body of literature dealing with radiation from various kinds of
sources over layered media that dates back to the 1909 classical work
by Sommerfeld for dipole radiation over a lossy earth [19–21]. The
many techniques developed in that research can be applied equally
well to the Veselago’s lens problem. This is a very realistic approach
since many scenes that one might want to image are best represented
by a stochastic process which has a broad frequency spectrum. A
quantity of interest is the optical coherence function and this is
best dealt with using Fourier transforms [22]. In a recent paper by
Gralac and Tip the complete solution for the electromagnetic field
excited in a layered structure containing negative index media with
permittivity and permeability described by Lorentz type dispersion is
developed [23]. Their solution is based on the use of Laplace transforms
in the time domain and is formulated in terms of the convolution of the
impulse response of the polarization in the media with an appropriate
Green’s function. Both p and s polarized waves are included. One
important result derived is that the excited electromagnetic field will
always be square integrable if the input source or initial field is square
integrable. These are required physical conditions and ensures that
the solutions do not have unlimited spatial exponential growth. Our
solution is not as general as the one provided by these authors but we
do note that an input sinusoidal signal of finite duration is square
integrable. These authors give a detailed solution for the single
interface problem and obtain results that support our solution for this
case. They do not give a detailed solution for the two interface problem
that involves coupled surface wave modes.

2. ANALYSIS-SINGLE INTERFACE

Consider the interface at z = 0 between free space and a negative index
of refraction medium as shown in Fig. 1. The medium parameters of
the output half-space will be assumed to be given by εε0 and µµ0 where

ε = 1− 2ω2
e

ω2
(1a)

µ = 1− 2ω2
e

ω2
(1b)
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For this medium the relative values of both epsilon and mu become
equal to −1 at the frequency ωe and remain negative for ω <

√
2ωe.

In the analysis given below we will make use of Gabor’s concept of an
analytic signal [24]. Consider a real time signal f(t) and its Fourier
transform

F (ω) =

∞∫

−∞
f(t)e−jωtdt

The original signal can be recovered using the inverse Fourier
transform, thus

f(t) =
1
2π

∞∫

−∞
F (ω)ejωtdω =

1
π

Re

∞∫

0

F (ω)ejωtdω

because F (−ω) = F ∗(ω), which is the complex conjugate function.
The integral without the real part designation is called the analytic
signal. The advantage gained by using the analytic signal is that we
only need to include positive frequencies. The real part of the analytic
signal gives the physical solution.

We will assume that the source illumination comes from a finite
width aperture that is located at z = −a and extends from minus to
plus infinity along the y-direction. The electric field will be assumed
to be in the y-direction and its intensity is a function of x only.
The Fourier transform of the spatial intensity will be represented by
A(kx, ω) and its frequency spectral density by S(ω, kx). In general the
aperture field will be a function of the radian frequency ω and the
frequency spectrum of each spatial component may be different. Thus
we show the spatial spectral density and the frequency spectral density
as a function of both ω and kx. The incident field will be assumed to
be that of a S polarized wave (TE wave) with a y-directed electric
field and a magnetic field with x and z components. Let the incident
electric field of an evanescent wave be given by the Fourier transform

Ei =
1
2π

∞∫

−∞
A(kx, ω)S(ω, kx)e−jkxx−α0(ω)(z+a)ejωtdω (2a)

The corresponding Fourier transform representation of the output
signal will be

Eo =
1
2π

∞∫

−∞
A(kx, ω)S(ω, kx)T (ω)e−jkxx−α0a−α(ω)zejωtdω (2b)
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where the transmission coefficient across the interface for an S
polarized wave is T (ω). On the input side there will be a reflected
evanescent decaying wave with a reflection coefficient R(ω). The
reflection and transmission coefficients are given by [2]

R(ω) =
µα0 − α

µα0 + α
(3a)

T (ω) =
2µα0

µα0 + α
= 1 + R(ω) (3b)

where α0 =
√

k2
x − k2

0, α =
√

k2
x − µεk2

0, and k0 = ω
c . (Note that

Pendry uses the e−iωt time dependence). The transmission coefficient
can be expressed in the following form

T (ω) =
2µα0 (µα0−α)

µ2α2
0 − α2

=
2µα0 (µα0 − α)(

1− 2ω2
e

ω2

)2 (
k2

x − k2
0

)−k2
x +

(
1− 2ω2

e
ω2

)2
k2

0

which can be simplified to the for

T (ω) = −2µα0(µα0 − α)ω4

4ω2
ek

2
x(ω2 − ω2

e)
(4)

We see that T (ω) has poles at ω = ±ωe. When ω becomes very large
both α0 and α become equal to jω/c. Hence for t < (a + z)/c the
contour of integration can be closed in the lower half of the complex
ω plane and there will be no contribution to the output field before
t = (a + z)/c, which is required by causality. We will assume that the
spectral density function S(ω, kx) vanishes sufficiently fast for large
values of ω so that the integral converges in the upper half of the ω
plane and we choose a contour of integration that runs below the poles
at ±ωe. The pole contribution to the integral may be evaluated by
residue theory and gives

Eo =−2πjA (kx, ωe)
µα0(µα0−α)ωe

8πk2
x

S(ωe, kx)ejωete−jkxx−α0a−αz+CC

=−jA(kx, ωe)
k2

x − k2
0

2k2
x

ωeS (ωe, kx) ejωete−jkxx−α0a−αz+CC

t > (a + z)/c (5a)
where all terms are evaluated for ω = ωe and CC represents the
complex conjugate term. The first term by itself represents the analytic
signal which we designate as Ẽo, thus

Ẽo = −jA(kx, ωe)
k2

x−k2
0

2k2
x

ωeS (ωe, kx) ejωete−jkxx−α0a−αz t>(a+z)/c

(5b)
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This solution is a discrete exponentially decaying wave at the frequency
ωe. The discrete wave represents some type of resonance, which could
be said to be due to surface plasmons [2].

From the relation (3b) it is clear that the tangential electric field
will be continuous across the interface. The tangential magnetic field
on the input side is proportional to

[1−R(ω)]
jα0

ωµ0
A(kx, ω) =

j2α0α(µα0 − α)
ωµ0[(µα0)2 − α2]

A(kx, ω) (6a)

while on the output side it is proportional to

[1 + R(ω)]
jα

ωµµ0
A(kx, ω) =

j2µα0α(µα0 − α)
ωµµ0[(µα)2 − α2]

A(kx, ω) (6b)

These two expressions are equal and have the same residues at
the poles. However, it should be noted that there is no pole
associated with the incident field. The reflection coefficient and the
transmission coefficient have the same residues. The tangential electric
and magnetic fields of this resonant mode are continuous across the
interface and the field has exponential decay away from the interface
on both sides. Thus this discrete frequency mode that is excited is
clearly a resonance effect. Once this mode is excited by the incident
field it will continue to oscillate, eventually decaying to zero because of
losses that usually will be present. The mode may also be viewed as a
surface wave that is bound to the interface and its electric field decays
in an exponential manner away from both sides of the interface.

An interesting variation of the above results are obtained if we
consider a sinusoidal signal of finite duration and with a frequency
equal to the resonant frequency of the surface wave. Thus consider
the input signal consisting of a sinusoidal oscillation sinωet at the
frequency ωe, which is turned on at t = 0 and turned off at t = τ . For
this signal the spectral function is given by

S(ω)=
ej(ωe−ω)τ − 1

2(ω − ωe)
− e−j(ω+ωe)τ − 1

2(ω + ωe)

=jej(ωe−ω)τ/2 τ

2
sin(ω−ωe)τ/2
(ω−ωe)τ/2

−je−j(ω+ωe)τ/2 τ

2
sin(ω+ωe)τ/2
(ω+ωe)τ/2

(7)

The part of S(ω) that involves the terms depending on τ , which
corresponds to when the signal is turned off, does not contribute to
the output at a + z for t < τ + (a + z)/c. Prior to that time the
spectral function has a pole at the resonant frequency of the surface
wave. Thus the system has a double pole at ω = ωe. The time response
for a double pole is−tejωet and thus the response for the single interface
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is given by

E0 = jA (kx, ωe)

(
k2

x − k2
0

)
ωe

4k2
x

e−jkxx−α0a−αz
(
tejωet

)
+ CC

a + z

c
< t < τ +

a + z

c
(8)

This type of response is well known for a lossless resonant circuit when
excited by a sinusoidal signal of finite duration and at the resonant
frequency of the circuit.

Later on we will show that for a lossless slab there will be two
surface wave modes whose frequencies coalesce at ω = ωe, when the
transverse wave number kx approaches infinity, to produce a triple
pole with a time response proportional to t2ejωet. This result was
obtained by Gómez-Santos from a model of the slab as a pair of coupled
mechanical resonators [9]. The signal output does not become infinite
since the signal is turned off at t = τ . When the signal input is turned
off the frequency spectrum no longer has a pole and is of the form
that makes the output become small because of a rapidly oscillating
spectral function.

The integrand also has branch points at ω = ±kxc, and ω =
±

√
k2

xc2 + 2ω2
e where c is the velocity of light in free space. Thus in

addition to the pole contributions there are additional contributions
to the field from branch cut integrals. The branch cut integrals give
rise to a continuous spectrum of waves and these fields will satisfy the
boundary conditions at the interface. The branch cut integrals will
not give rise to exponentially growing fields because the branches for
which the real part of α0 and α are greater than zero must be chosen
in order to ensure that the fields remain finite as z approaches infinity.
The analysis to include the branch cut integrals would be similar to
that described by Stratton for propagation in a dispersive medium but
will not be pursued in this paper for the single interface problem [25].

3. SOLUTION FOR THE TWO INTERFACE PROBLEM

The Veselago’s flat lens involves two interfaces, one at z = −d/2 and
one at z = d/2 as shown in Fig. 2. The slab is characterized by
the same dispersion relations used for the single interface and given
earlier by Eq. (1). Each interface by itself can support a resonant
surface plasmon mode, i.e., surface wave. When the spacing between
the two interfaces is finite these two modes will interact and the result
will be two new perturbed modes with resonant frequencies that lie
above and below that of the mode supported by a single interface.
An analogy with a similar waveguide problem will help to clarify
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the phenomenon involved. Consider a rectangular waveguide that is
operated below cutoff. Let a short section of this waveguide be filled
with a high dielectric constant material so that it forms a resonant
cavity. Since a dielectric slab can support even and odd surface wave
modes at discrete frequencies these represent the resonant modes of
the cavity. The response function of this cavity will have poles at the
resonant frequencies of the cavity. If a spectrum of evanescent waves
with a continuous frequency spectrum is incident on this cavity this
incident field will excite a finite response in the resonant cavity at
its resonant frequencies. If we assumed that a steady state sinusoidal
field at the resonant frequency of one of the cavity modes was incident
upon it the response would be infinite. But with a field having a finite
frequency spectral density the response of the cavity is also finite and is
determined by the residues at the poles that lie in the frequency range
of the incident field spectrum. This same phenomenon occurs with a
slab of negative index material sandwiched between two regions with a
positive index of refraction. When we include frequency dispersion
the overall transmission factor through the slab of negative index
material exhibits poles corresponding to the new frequencies for the
two coupled resonators. Thus an incident field with a continuous but
finite frequency spectrum will excite these resonances in addition to a
continuous spectrum of transmitted waves. These resonant responses
do not exhibit growing exponential waves. If the Veselago lens was to
be used to image the aperture field distribution at z = −d at an image
plane located at d/2 beyond the second interface then the excitation
of the surface plasmons would represent an artifact that should not be
present in the image since the aperture field does not contain discrete

(a) (b)

Figure 2. (a) The even surface wave mode field distribution in a flat
slab lens. (b) The odd surface wave mode field distribution in a flat
slab lens.
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frequency components (by assumption) [3]. When frequency dispersion
is taken into account and the analysis is carried out in a more complete
manner, rather than assuming a steady state sinusoidal incident field of
infinite duration, the results are different from what Pendry obtained.

Our solution has a number of features similar to what Gómez-
Santos included but differ in some important respects. If we assume an
incident field with a continuous frequency spectrum that overlaps both
resonant frequencies, and with a finite spectral density, the response
of the lens can be evaluated in terms of the residues at the two poles
corresponding to the surface wave mode resonances. This results in
a field distribution within the lens that does not grow exponentially
and is quite different from what Pendry had found. For a lossless slab
and a sinusoidal input signal of finite duration, and at the frequency
for which the relative values of epsilon and mu equal −1, the response
does not become exponentially large when the transverse wave number
approaches infinity because of the excitation of the surface wave modes.
The interference produced by the excited surface wave modes destroys
the super resolution properties of the lens. We also show that an
interfering signal that blurs the output at the image plane for the
propagating waves also occurs. This interfering signal arises from
branch cut integrals that are part of the complete solution.

The analysis given below will provide the details that support
the above description and conclusions. We will take advantage of
the symmetry inherent in the problem and construct the even and
odd mode solutions in separate steps. We can superimpose the two
solutions so as to obtain the solution for a field incident from one
side of the slab only. This has the advantage that it provides simpler
expressions to evaluate for the residues at the poles. We will express
the even solution, for one component of the spatial spectrum A(kx, ω)
of the electric field, in the form

Ee =
1
2π

∞∫

−∞
Ψe(ω)e−jkxxejωtdω (9)

where

Ψe(ω) = C1e
−α0(z+d) + C2e

α0(z+d/2) − d < z < −d/2
= C3 coshαz − d/2 < z < d/2

= C1e
α0(z−d) + C2e

−α0(z−d/2) d/2 < z

The corresponding spectral function for the magnetic field is (we omit
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a factor 1/jωµ0)

Ψhe(ω) = −α0C1e
−α0(z+d) + α0C2e

α0(z+d/2) − d < z < −d/2

=
α

µ
C3 sinhαz − d/2 < z < d/2

= C1α0e
α0(z−d) − α0C2e

−α0(z−d/2) d/2 < z

We now match the fields at the interfaces and solve for the amplitude
constants to obtain

C2 = C1
µα0 cosh(αd/2)− α sinh(αd/2)
µα0 cosh(αd/2) + α sinh(αd/2)

e−α0d/2 (10a)

C3 = C1
2µα0e

−α0d/2

µα0 cosh(αd/2) + α sinh(αd/2)
(10b)

where α0 =
√

k2
x − k2

0, α =
√

k2
x − µ2k2

0. For the odd mode solution
the electric field spectral functions are chosen as

Ψo(ω) = C1e
−α0(z+d) + D2e

α0(z+d/2) − d < z < −d/2
= −D3 sinhαz − d/2 < z < d/2

= −C1e
α0(z−d) −D2e

−α0(z−d/2) d/2 < z

The magnetic field spectral functions are

Ψho(ω) = −α0C1e
−α0(z+d) + α0D2e

α0(z+d/2) − d < z < −d/2

= −α

µ
D3 coshαz − d/2 < z < d/2

= −C1α0e
α0(z−d) + α0D2e

−α0(z−d/2) d/2 < z

The solutions for the amplitude constants are

D2 = C1
µα0 sinh(αd/2)− α cosh(αd/2)
µα0 sinh(αd/2) + α cosh(αd/2)

e−α0d/2 (11a)

D3 = C1
2µα0e

−α0d/2

µα0 sinh(αd/2) + α cosh(αd/2)
(11b)

where all amplitude constants are functions of kx and ω. The
superposition of the two solutions gives the expressions for the electric
field spectral functions in the three regions. However, we will leave the
solutions in the form of the even and odd modes since the expressions
we need to evaluate to obtain the residues at the poles are simpler.
In the slab the superposition of the even and odd modes reduces to
the results obtained by Pendry when the frequency is set equal to ωe

and D3 = −C3, i.e., a strict steady state solution is assumed to exist.
Since we still have to carry out the inversion of the Fourier transform
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the final solution will be determined by the residues at the poles along
with contributions from integration along the branch cuts.

The expressions for the pole locations are obtained by equating
the denominators in (10) and (11) to zero. These equations are, for
the even and odd modes respectively [3, 8, 9],

coth
αd

2
= − α

µα0
(12a)

tanh
αd

2
= − α

µα0
(12b)

An alternative form of these equations that are convenient to use for
numerical calculations are

e−αd =
α + µα0

α− µα0
(13a)

e−αd =
µα0 + α

µα0 − α
(13b)

The first equation has a zero when ω = ω+
e > ωe while the second

equation has a zero when ω = ω−e < ωe. The negatives of these
two frequencies are also zeros. It is easy to interpret the form of
the equations given above. The two resonant modes correspond to
a mode with an even electric field distribution about the mid-plane of
the slab and a second mode with an electric field distribution that is
odd about the mid-plane of the slab. Eq. (12a) is a statement of the
equality of the field impedance seen when looking into the slab with an
open-circuit at the mid-plane to that seen looking outward from the
interface. Similarly Eq. (12b) corresponds to setting the impedance
seen looking into the slab with a short-circuit at the mid-plane and
equating this to the impedance looking out from the interface. This is
an application of the well known transverse resonance method that is
used to solve for the surface waves on many microwave structures. For
each value of the transverse wave number kx there is a pair of resonant
modes with resonant frequencies that depend on kx. For large values
of kx the two interfaces are electrically far apart so the interaction
between the two modes is small and the two resonant frequencies will
be close to ωe. The electric field in the slab for the even mode is
described by the function coshαz and by − sinhαz for the odd mode,
as illustrated in Fig. 2. Both of these modes will be excited when the
input signal has a spectral width that extends from at least ω−e to ω+

e .
These modal solutions can be evaluated in terms of the residues at the
poles.

We now superimpose the even and odd solutions to obtain the final
solution with a field incident only from the object plane at z = −d/2.
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On the input side the electric field is given by

E =
1
2π

∞∫

−∞
[2C1e

−α0(z+d) + (C2 + D2)eα0(z+d/2)]e−jkxx+jωtdω

=
1
2π

∞∫

−∞
A(kx, ω)S(ω)

[
2e−α0(z+d)+

µα0 cosh(αd/2)−α sinh(αd/2)
µα0 cosh(αd/2)+α sinh(αd/2)

eα0z

+
µα0 sinh(αd/2)−α cosh(αd/2)
µα0 sinh(αd/2)+α cosh(αd/2)

eα0z

]
e−jkxx+jωtdω −d<z<−d/2(14a)

which is an equation that shows that the constant C1 = A(kx, ω)S(ω).
Within the slab the total electric field is

E =
1
2π

∞∫

−∞
A(kx, ω)S(ω)

[
2µα0e

−α0d/2 cosh(αz)
µα0 cosh(αd/2) + α sinh(αd/2)

− 2µα0e
−α0d/2 sinhαz

µα0 sinh(αd/2)+α cosh(αd/2)

]
e−jkxx+jωtdω −d/2<z<d/2(14b)

while at the image plane at z = d the solution is given by

E0 =
1
2π

∞∫

−∞
A(kx, ω)S(ω, kx)

[
µα0 cosh(αd/2)− α sinh(αd/2)
µα0 cosh(αd/2) + α sinh(αd/2)

e−α0d

−µα0 sinh(αd/2)− α cosh(αd/2)
µα0 sinh(αd/2) + α cosh(αd/2)

e−α0d

]
e−jkxx+jωtdω z = d (14c)

Figure 3. The modified integration contour showing the contours
around the branch cuts.
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The residues can be found by the usual procedure of evaluating the
frequency derivative of each denominator at the corresponding zero.
For the first factor the denominator vanishes when ω = ω+

e where
µα0 cosh(αd/2) = −α sinh(αd/2). The residue associated with this
factor is

Res
(
ω+

e

)
=

−2α sinh (αd/2) e−α0d+jωt

∂
∂ω [µα0 cosh(αd/2) + α sinh(αd/2)]

∣∣∣ω+
e

=
−2ωeα

(
1− e−αd

)
e−α0dejω+

e t

(A + B + C + D) + e−αd(E + F −GH)

∣∣∣ω+
e

= R̂es(ω+
e )e−α0(ω+

e )d+jω+
e t (15a)

Similarly the residue at the pole ω = ω−e is given by

Res(ω−e ) =
2α cosh(αd/2)e−α0d+jωt

∂
∂ω [µα0 sinh(αd/2) + α cosh(αd/2)]

∣∣∣ω−e

=
2ωeα

(
1− e−αd

)
e−α0dejω−e t

(A + B + C + D)− e−αd(E + F −GH)

∣∣∣ω−e
= R̂es(ω−e )e−α0(ω−e )d+jω−e t (15b)

where A = 4k3
eα0

k3
0

, B = −µk0ke

α0
, C = −4µk3

e
αk0

, D = −µ2k0ke

α , E =

−µk0ke

α0
, F = 4α0k3

e

k3
0

, G = (α− µα0)d− 1, H = 4µk3
e

αk0
+ µ2k0ke

α , ke = ωe
c .

We note that A, B, and C are positive constants and that the sum
A + B + C + D is never zero. Thus the residues at the image plane
will be proportional to e−α0d. The form of the solution obtained from
Eq. (14c) is thus (we only need to evaluate the expressions for the poles
at ω±e to obtain the analytic signal representation)

Ẽo =
2πj

2π

[
A

(
kx, ω+

e

)
S

(
ω+

e

)
e−jkxxR̂es

(
ω+

e

)
e−α0(ω+

e )dejω+
e t

+A
(
kx, ω−e

)
S

(
ω−e

)
e−jkxxR̂es

(
ω−e

)
e−α0(ω−e )dejω−e t

]
z=d, t>2d/c (16)

Inside the slab the solution is given by Eq. (14b) and the contribution
from the surface waves when evaluated in terms of the residues is given
by

Ẽ = j

[
A(kx, ω+

e )S(ω+
e )e−jkxxR̂es(ω+

e )e−α0(ω+
e )d/2+jω+

e t cosh(αz)
cosh(αd/2)

∣∣∣ω+
e

+A(kx, ω−e )S(ω−e )e−jkxxR̂es(ω−e )e−α0(ω−e )d/2+jω−e t sinhαz

sinh(αd/2)

∣∣∣ω−e
]

−d/2 < z < d/2, t > (z + d)/c (17)
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(a) (b)

Figure 4. A plot of the resonant frequencies for the even and odd
surface wave modes, and their residues, as a function of kx/ke =
kxc/ωe.

The residues are given by Eq. (15) and the extra factors compensate
for the difference in the numerators in Eqs. (14b) and (14c). These
resonant surface wave modes that are excited are proportional to
e−α0d/2 at z = d/2 and do not exhibit exponential growth. In Fig. 4
we show the resonant frequencies for the even and odd surface wave
modes and their residues as a function of kx/ke. Note that the residues
remain bounded as kx becomes large. The above solutions are also
valid for kx < k0 with α0 and α replaced by jβ0 =

√
k2

0 − k2
x and

jβ =
√

µεk2
0 − k2

x.
Let us, at this point, assume that the field in the aperture plane

consists of a sinusoidal oscillation sinωet at the frequency ωe, which is
turned on at t = 0 and turned of at t = τ . For this signal the spectral
function is given by Eq. (7) and is repeated below:

S(ω)=
ej(ωe−ω)τ − 1

2(ω − ωe)
− e−j(ω+ωe)τ − 1

2(ω + ωe)

=jej(ωe−ω)τ/2 τ

2
sin(ω−ωe)τ/2
(ω−ωe)τ/2

−je−j(ω+ωe)τ/2 τ

2
sin(ω+ωe)τ/2
(ω+ωe)τ/2

(18)

For notational convenience we will let the function in the integrand in
Eq. (14c) be denoted by F (α0, ω) where

F (α0, ω) =
[
µα0 cosh(αd/2)− α sinh(αd/2)
µα0 cosh(αd/2) + α sinh(αd/2)

−µα0 sinh(αd/2)−α cosh(αd/2)
µα0 sinh(αd/2)+α cosh(αd/2)

]
e−α0d

=
8µα0αe−α0d−αd

(µα0+α)2−(µα0−α)2e−2αd
(19)

which was obtained by combining the even and odd mode solutions in
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Eq. (14c). At the frequencies ω = ±ωe where the relative values of
epsilon and mu are equal to −1 this function equals 2. There are no
poles at ±ωe. However, the function F (α0, ω) has poles at ±ω±e which
are the resonant frequencies of the even and odd surface wave modes.

The inversion contour for the Fourier transform runs parallel to
the real ω axis and just below the poles at ±ω+

e , ±ω−e , and ±ωe. From
a consideration of the wave function ejωt−jωτ−j2

√
k2
0−k2

xd we see that
for large values of ω that for t < τ +2d/c the wave function will become
small on the semi-circle at infinity in the lower half of the complex ω
plane. Thus we can close the inversion contour in the lower half of the
complex plane and since no singularities are enclosed the value of the
integral will be zero. For the part of the spectral density function in
Eq. (18) that does not depend on τ the inversion contour can also be
closed in the lower half of the complex ω plane when t < 2d/c and
will not give any contribution to the field. These conditions are simply
the requirements of causality. Note that as ω becomes very large the
propagation factor

√
µεk2

0 − k2
x in the slab becomes the same as that

in free space because epsilon and mu approach the free space values,
and hence there is no problem with time running backwards as far
as imposing the causality condition is concerned. The spectral density
function of the input signal that depends on τ will give the output field
at the image plane after the sinusoidal signal has been turned off. This
signal would be of less interest since it is unlikely that measurements
of the field at the image plane would be made after the illumination of
the object has been turned off.

The evaluation of the fields in terms of the residues require that
the Fourier inversion integral be taken over a closed contour enclosing
the poles and that the integrand be single valued within the contour.
The expression in Eq. (14) is an even function of α and hence has
branch points associated only with α0. Suitable branch cuts are
the lines joining the two branch points, corresponding to the zeroes
ω = ±kxc = ±ωx of α0, to plus and minus infinity as shown in Fig. 3.
The original inversion contour runs parallel to the real axis, from minus
infinity to plus infinity, but below the poles at ±ω±e and ±ωe. This
contour is closed by the contour shown in Fig. 3, which includes a
contour running around the branch cut from ωx = −kxc to −∞ and
from kxc to ∞, and closed by a semi-circle contour at infinity in the
upper half of the complex ω+jσ plane. There is no contribution to the
integrals from the semi-circle contour. The poles are enclosed within
the contour. The value of the integral in Eq. (14) thus consists of the
terms corresponding to the residues at the poles plus integrals around
the branch cuts but traversed in the opposite direction. In the absence
of loss the poles lie on the real ω axis. On the bottom side of the
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branch cut in the left half plane α0 = j
√

k2
x − k2

0 but on the top side
of this branch cut α0 changes sign. On the branch cut in the right
half plane α0 = j

√
k2

x − k2
0 on the top side of the cut and equals the

negative of this on the lower side of the cut. The integration along the
top and bottom sides of the branch cuts can be combined and is given
by

I1 =
1
2π

−ωx∫

−∞
A(kx)

[
F

(
j
√

k2
0 − k2

x, ω

)
− F

(
−j

√
k2

o − k2
x, ω

)]

[
1

2(ω + ωe)
− 1

2(ω − ωe)

]
e−jkxx+jωtdω

+
1
2π

∞∫

ωx

A(kx)
[
F

(
−j

√
k2

0 − k2
x, ω

)
− F

(
j
√

k2
o − k2

x, ω
)]

[
1

2(ω + ωe)
− 1

2(ω − ωe)

]
e−jkxx+jωtdω (20)

For the propagating waves the solution at the image plane consists
of the residue wave from the poles at ±ωe with a frequency of ωe, plus
the field from the branch cut integrals, which is given by Eq. (20). The
desired wave is the pole wave at the frequencies ±ωe which is given by
the residues at ±ωe (note that F (j

√
k2

0 − k2
x, ωe) = 2),

E0p = jA(kx)e−jkxx+jωet + CC 2d/c < t < τ + 2d/c (21a)

where CC is the complex conjugate term. The contribution from the
branch cut integrals is

− 1
2π

∞∫

ωx

A(kx)

[
4µβ0βe−j(β0+β)d

(µβ0 + β)2 − (µβ0 − β)2e−j2βd

+
4µβ0βe−j(β−β0)d

(µβ0 − β)2 − (µβ0 + β)2e−j2βd

]
ωee

−jkxx+jωt

ω2 − ω2
e

dω + CC

2d/c < t < τ + 2d/c (21b)

where β0 =
√

k2
0 − k2

x and β =
√

µεk2
0 − k2

x. For large values of k0 and
for ε = µ the integrand in the above expression becomes

A(kx)
{−8j

√
εµ sin[(

√
εµ + 1)k0d]

(
√

µ +
√

ε)2

}
ωe

ω2
e−jkxx+jωt

= −2jA(kx) sin
[
2

(
1− ω2

e/ω2
)
k0d

] ωe

ω2
e−jkxx+jωt
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When the complex conjugate of this expression is added the result
shows that the contribution from the branch cut integrals vanish for
large values of k0.

The waves from the branch cut integrals have a continuous
frequency spectrum which will cause some blurring of the image at the
image plane because the transmission coefficient for these propagating
waves depend on the frequency. Only the pole wave at “ω = ωe” is
transmitted with an overall transmission coefficient equal to one. If
the frequency ωe is greater than ωx then the point ω = ωe lies on the
branch cut but the rest of the integrand vanishes for ω = ωe so there is
no pole on the branch cut. There are no surface wave poles associated
with the propagating waves.

For the evanescent waves the solution consists solely of the pole
waves. Thus for 2d/c < t < τ + 2d/c the sum of the dominant wave
given by Eq. (21a) and the excited surface waves are given by

E0 =
j

2
A (kx) e−jkxx

[
2ejωet +

ωee
−α0(ω+

e )d

ω+
e − ωe

R̂es
(
ω+

e

)
ejω+

e t

−ωee
−α0(ω−e )d

ωe − ω−e
R̂es

(
ω−e

)
ejω−e t

]
+ CC (22)

where CC is the complex conjugate terms. The value of the residues
are given by Eqs. (15a) and (15b). The first wave at ±ωe corresponds
to Pendry’s solution for the loss free lens. The other two terms are
the resonant surface wave modes at ±ω±e whose excitation cannot be
avoided when frequency dispersion is included for epsilon and mu.
These resonant modes will cause interference with the desired mode
with frequency ωe and thus will make it very difficult to obtain a
coherent reconstruction of the evanescent wave amplitudes since the
resonant frequencies of the surface wave modes vary with the transverse
wave number. One can anticipate that some loss will be present in
the slab and this will limit the life time of the resonant surface wave
modes (surface plasmons) so the interference will die out. But as noted
by a number of investigators the presence of loss will limit the sub-
wavelength resolution of the lens. With either scenario the performance
of the lens is reduced. In either case the frequency dispersion or loss,
or a combination of both, will avoid any field divergence for large
values of the transverse wave number. It is also important to keep in
mind that for large values of kx the surface wave resonant frequencies
are very close to ωe so the frequency of the incident field must be
carefully controlled. If the frequency of the incident field should shift
to either ω+

e or ω−e this will create a double pole with a time response
proportional to tejω0te−α0(ω0)d where ω0 equals ω+

e or ω−e instead of
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the desired dominant wave at ωe.
It can be shown that for kx greater than 5 the resonant surface

wave frequencies are essentially equal, and furthermore to a high degree
of accuracy [9],

ωe

ω+
e − ωe

e−α0d ≈ ωe

ωe − ω−e
e−α0d ≈ 2 (23)

Also as reference to Eqs. (15a) and (15b) shows the residues are
approximately equal to −0.5ωee

−α0d and 0.5ωee
−α0d because A is the

dominant coefficient in the denominator and very nearly equal to 4kx.
Thus we can express the solution in the form

E0 = jA (kx) e−jkxx
[
ejωet − ej(ω+

e +ω−e )t/2 cos∆ωt
]

+ CC

2d/c < t < τ + 2d/c (24)

where ∆ω = ω+
e −ω−e

2 . We can also make the approximation (ω+
e +

ω−e )/2 ≈ ωe. This is essentially the result obtained by Goméz-Santos
by using a model of two coupled mechanical resonators [9]. For ∆ωt
small the expansion of the cosine function gives

E0≈ j

2
A(kx)e−jkxx(∆ωt)2ejωet =

j

2
A(kx)e−jkxx+jωet(ωet)2e−2α0d (25)

which shows that it takes a considerable length of time for the field
at the image plane to build up to its steady state value when the
decaying exponential factor is very small. For example, if d = λ0/4
and kx = 20k0, then

t =
1

∆ω
=

1
ωe

e20k0λ0/4 = 4.4× 1013 1
ωe

which for a frequency of 10 GHz. gives t equal to 11.7 minutes. The
result shown in Eq. (25) can also be obtained from a different approach.
When kx approaches infinity ∆ω approaches zero and ω+

e and ω−e
coalesce to produce a triple pole given by

1
4
e−α0d

[
ωe

ω−ω+
e
− ωe

ω−ω−e

]
1

ω−ωe
→ωe

4
e−α0d ω+

e −ω−e
(ω−ωe)3

→ω2
e

4
e−2α0d 1

(ω−ωe)3

which has the time response (j/8)(ωet)2e−2α0dejωet. Since the signal is
turned off at a finite time τ the field at the image plane vanishes as kx

approaches infinity. For finite values of kx and ∆ωt that is large the
field described by Pendry’s solution is slowly modulated by the cosine
factor. Since the resonant frequency of the surface wave modes depend
on kx the field at the image plane is not coherent in frequency and thus
it would be virtually impossible to achieve a coherent reconstruction
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of the evanescent wave amplitudes at the image plane. If features as
small as one tenth of a wavelength was to be observed values of kx

up to about 10ke ≈ 10k0 would have to be retained. The interference
from the excited resonant surface waves would make it unlikely that
any useful coherent reconstruction of the evanescent waves with these
values of kx could be achieved.

After the signal has been turned off the spectral function S(ω)
that must be used is

S(ω) = jej(ωe−ω)τ/2 τ

2
sin(ω − ωe)τ/2
(ω − ωe)τ/2

− je−j(ω+ωe)τ/2 τ

2
sin(ω + ωe)τ/2
(ω + ωe)τ/2

For this spectrum there are no poles at ±ωe. The rapid oscillations
of the spectral function for large values of |ω − ωe| and |ω + ωe| will
ensure that the branch cut integrals are small.

Various authors have shown that losses in the negative index slab
would also reduce the resolution capability of the lens even if there
was no frequency dispersion in epsilon and mu. The excited resonant
surface wave modes will decay to zero because of losses which will be
present, even though we did not include losses in the above analysis
which focused on the limitations of the loss free Veselago lens because
of frequency dispersion in epsilon and mu.

When the losses in the lens material are small the new surface
wave eigenvalues can be found using a perturbation method based on
the Newton-Raphson method. Consider the eigenvalue Equation (13a)
and let

f(ω) = µα0 − α + (µα0 + α)eαd

We now assume that the loss in the material is the same for epsilon
and mu and thus let

ε = 1− 2ω2
e

ω(ω + jγ)
≈ 1− 2ω2

e

ω2
+

j2γω2
e

ω3
= µ

where γ is the loss parameter and is considered to be very small relative
to ωe. Since the root for this equation is very close to ωe the first
approximation to the root when loss is included is given by

f(ω) = f(ωe) +
∂f

∂ω

∣∣∣ωe(ω − ωe) = 0 (26a)

which gives

ω = ωe − f(ωe)
∂f(ω)/∂ω |ωe

(26b)

This expression can be evaluated and when only the first order terms
in γ are retained and the transverse wave number kx is assumed to be
large it is found that ω = ω+

e + j γ
2 , and similarly ω = ω−e + j γ

2 , for the
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eigenvalues of the even and odd surface wave modes when a small loss
is included. This result is the same as what Grbic found [10]. When
these values for the eigenvalues are used in Eq. (19) it is found that
for large kx that

F (α0, ωe) ≈ 2
1 + (γ/ωe)2e2kxd

(27)

which is now the residue for the dominant wave. The solution for the
excited surface waves will now be

E0 =
j

2
A(kx)e−jkxx

[
ωee

−α0(ω+
e )d

ω+
e − ωe + jγ/2

R̂es(ω+
e )ejω+

e t−γt

− ωee
−α0(ω−e )d

ωe − ω−e − jγ/2
R̂es(ω−e )ejω−e t−γt

]

We now make use of Eq. (23) to obtain

ωe

(ω+
e −ωe)[1+jγ/2(ω+

e −ωe)]
=

2eα0d

1+jωe/[(ω+
e −ωe)Q]

=
2eα0d

1+jeα0d/Q

where Q is the quality factor ωe/γ for the surface wave resonator. A
similar expression will hold for the odd surface wave mode. In place
of Eq. (22) the solution for the evanescent waves for large values of kx

is now given by

Eo ≈ jA(kx, ωe)e−jkxx

[
ejωet

1+e2α0d/Q2
− 1

2[1+jeα0d/Q]
e−γt/2

(
ejω+

e t+ejω−e t
)]

+CC (28)

for 2d/c < t < τ + 2d/c.
For the propagating waves where kx < k0 the result given in

Eq. (21a) should be replaced by

jA(kx, ωe)e−jkxx

[
(1− j/Q)ejωet

1+ej2βdk2
x/(β2

0Q2)

]
+CC 2d/c < t < τ+2d/c (29)

which is valid for small losses and |kx| < k0. This term, together with
the branch cut integrals, when integrated over |kx| < k0, gives the total
image field arising from the propagating waves at the image plane. As
noted earlier, the propagating wave spectrum given by the branch cut
integrals produce some blurring of the image, an artifact that was not
present in Pendry’s ideal lens solution. Eq. (29) shows that losses will
also produce some blurring of the image.

The loss reduces the amplitudes of the residues by a substantial
amount. In addition it can be seen that the excited surface wave modes
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will decay quite rapidly. For example, if the quality factor or Q of the
surface wave mode resonances equals 104 then the surface wave modes
become negligible in less than a microsecond if the frequency is equal
to 10 GHz. Hence interference from the excited surface wave modes
is not likely to be a serious factor in reducing the performance of a
lossy Veselago lens. However, the factor multiplying the dominant pole
wave will become small whenever the factor (γ/ωe)eα0d = Q−1eα0d ≈
Q−1ekxd > 1. For the above example this occurs for kx > 9.2/d.
If d = λ0/4 this corresponds to λx > 0.17λ0. The amplitude of
features smaller than this will be reduced by a factor of more than
1/2 at the image plane. This reduction in the amplitudes of the
evanescent waves increases exponentially with kx. Merlin showed that
a small perturbation σ in the relative value of ε reduced the resolution
of the lens in accordance with a formula like that in Eq. (28) with
j2γ/ωe replacing σ [4]. Thus if the frequency of the incident field
drifts away from the value ωe this will be equivalent to a change in
the relative values of epsilon and mu from −1 and can produce a
significant reduction in the resolution of the lens. Hence in practice,
if a Veselago lens could be constructed, it will be the losses and the
frequency stability of the source that illuminates the object that will
limit the resolution, not the interference from the excited surface wave
modes.

We can now understand what happens when a steady state
sinusoidal incident field at the frequency ωe is assumed. For this case
the frequency spectral function can be represented by a delta function,
i.e., S(ω) = 2πδ(ω − ωe) and thus the inverse Fourier transform
results in the field solutions being evaluated at the frequency ωe where
ε = µ = −1, which gives Pendry’s solution. When frequency dispersion
is neglected then the only pole is a double pole that occurs when
kx becomes infinite. Although Pendry’s solution has some of the
characteristics of a resonant mode its resonant frequency is not clearly
defined except perhaps through the condition that the relative values
of epsilon and mu must equal −1. This is the cause for the divergent
behavior of Pendry’s solution since it corresponds to a steady state
sinusoidal signal being applied to a resonant system at its resonant
frequency. When frequency dispersion is included and an incident field
with finite frequency spectral density is assumed then the response
is obtained in terms of the residues at the surface wave poles and
this response is finite even when kx becomes infinite. For the case
of a sinusoidal signal turned on at t = 0 and later turned off the
frequency spectrum contains a pole term at the frequency of the
sinusoidal signal instead of a delta function spectral term. The use
of a sinusoidal signal of finite duration reveals much richer physical
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phenomena associated with Veselago’s lens that is completely missed
in a steady state sinusoidal solution.

4. CONCLUSION

An analysis of transmission through a flat slab lens was carried out.
For the first case considered it was assumed that the input field had
a continuous frequency spectrum with finite density, and that both
epsilon and mu exhibited frequency dispersion. The field excited in
the lens was expressed in terms of the even and odd resonant surface
wave modes whose amplitudes were evaluated in terms of the residues
at the poles. For this case it was found that there were no exponentially
growing evanescent waves in the slab. However, when the incident field
was chosen as a sinusoidal signal with finite duration a dominant wave
at the frequency ωe, at which the relative values of epsilon and mu
where equal to −1, was also excited but due to interference from the
excited surface wave modes a coherent reconstruction of the evanescent
wave amplitudes was not possible. As a consequence of this result
a lossless Veselago flat lens with super resolution is not physically
possible. When small loss is included in the material parameters the
excited surface wave modes decay away in a very short period of time
and their interference effects become negligible. The resolution of the
Veselago lens in now limited by the loss, a result previously established
by a number of investigators, and/or a signal frequency that deviates
from that for which the relative values of epsilon and mu are exactly
equal to −1. A new result that others had not found was the existence
of a continuous spectrum of propagating waves that arise from branch
cut integrals and which will blur the image of these waves at the image
plane. It was also concluded that Pendry’s solution for a lossless lens
was not a continuous function of the physical parameters and hence
did not constitute a proper physical solution. The analysis presented
in this paper is a classical one and gives a solution that satisfies the
required conditions for a proper physical solution.
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