1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of di®raction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 10, 1448-1461, Nov. 1974.
2. Pathak, P. H., "High frequency techniques for antenna analysis," Proc. IEEE, Vol. 80, No. 10, 44-65, Jan. 1992.
doi:10.1109/5.119566
3. Ziolkowski, R. W. and N. Engheta, "Introduction, history, and selected topics in fundamental theories of metamaterials," Metamaterials Physics and Engineering Explorations, N. Engheta and R. W. Ziolkowski (eds.), 5{37, IEEE Press, New Jersey, 2006.
4. Iyer, A. K. and G. V. Elefttheriades, "Negative-refractive-index transmission-line metamaterials," Negative-refraction Metamate-rials: Fundamental Principles and Applications, G. V. Eleftheriades and K. G. Balmain (eds.), 1--48, John Wiley and Sons, New Jersey, 2005.
5. Caloz, C. and T. Itoh, Electromagnetic Metamaterials, John Wiley and Sons, 2006.
6. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
doi:10.2528/PIER04032602
7. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "A UTD for predicting ¯elds of sources near or on thin planar positive/negative material discontinuities ," Radio Science, Vol. 42, RS6S18, 2007.
8. Rojas, R. G., "Wiener-Hopf analysis of the EM diffraction by an impedance discontinuity in a planar surface and by an impedance half-plane ," IEEE Trans. Antenna Propagat., Vol. 36, 71-83, Jan. 1988.
doi:10.1109/8.1076
9. Rojas, R. G. and P. H. Pathak, "Diffraction of EM waves by a dielectric/ferrite half-plane and related configurations," IEEE Trans. Antenna Propagat., Vol. 37, 751-763, Jun. 1989.
doi:10.1109/8.29362
10. Rojas, R. G., "Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces," IEEE Trans. Antenna Propagat., Vol. 36, 956-970, Jul. 1988.
11. Tiberio, R., G. Pelosi, and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces," IEEE Trans. Antenna Propagat., Vol. 33, 867-873, Aug. 1985.
doi:10.1109/TAP.1985.1143687
12. Tiberio, R., G. Pelosi, G. Manara, and P. H. Pathak, "High-frequency scattering from a wedge with impedance faces illuminated by a line source, Part I: Diffraction ," IEEE Trans. Antenna Propagat., Vol. 37, 212-218, Feb. 1989.
doi:10.1109/8.18708
13. Aidi, M. and J. Lavergnat, "Comparison of Luebbers' and Maliuzhinets' wedge diffraction coe±cients in urban channel modelling," Progress In Electromagnetics Research, Vol. 33, 1-28, 2001.
doi:10.2528/PIER00112005
14. Manara, G., P. Nepa, G. Pelosi, and A. Vallecchi, "An approximate solution for skew incidence diffraction by an interior right-angled anisotropic impedance wedge," Progress In Electromagnetics Research, Vol. 45, 45-75, 2004.
doi:10.2528/PIER03052702
15. Senior, T. B. A. and E. Topsakal, "Diffraction by an anisotropic impedance half plane-revised solution ," Progress In Electromagnetics Research, Vol. 53, 1-19, 2005.
doi:10.2528/PIER04061702
16. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.
17. Pathak, P. H. and R. G. Kouyoumjian, "The dyadic diffraction coefficient for a perfectly conducting wedge," The Ohio State University; Prepared Under Contract AF19(628)-5929 for Air Force Cambridge Research Laboratories , Vol. 2183-4, Jun. 1970.
18. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "A UTD for the radiation by sources near thin planar metamaterial structures with a discontinuity ," 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, Dec. 2007.
19. Lertwiriyaprapa, T., An approximate UTD development for the radiation by antennas near or on thin material coated metallic wedges , Ph.D. Dissertation, The Ohio State University, USA, 2007.