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Abstract—A new, approximate, uniform geometrical theory of
diffraction (UTD) based ray solutions are developed for describing
the high frequency electromagnetic (EM) wave radiation/coupling
mechanisms for antennas on or near a junction between two different
thin planar slabs on ground plane. The present solution is obtained
by extending the normal incidence solution in order to treat the
more general case of skew (or oblique) incidence (three-dimensional
3-D). Plane wave (for oblique or skew incidence) and spherical wave
illumination are all considered in this work. Unlike most previous
works, which analyze the plane wave scattering by such structures via
the Wiener-Hopf (W-H) or Maliuzhinets (MZ) methods, the present
development can also treat problems of the radiation by and coupling
between antennas near or on finite material coatings on large metallic
platforms. In addition, the present solution does not contain the
complicated split functions of the W-H solutions nor the complex MZ
functions. Unlike the latter methods based on approximate boundary
conditions, the present solutions, which are developed via a heuristic
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spectral synthesis approach, recover the proper local plane wave Fresnel
reflection and transmission coefficients and surface wave constants of
the material slabs. There is a very good agreement, with less than
±1 dB differences when the numerical results based on the presented
UTD solution for a material junction are compared with that of the
MZ solution.

1. INTRODUCTION

A new, approximate, UTD [1, 2] based ray solutions are developed for
describing the high frequency EM wave radiation/coupling mechanisms
for antennas on or near a junction between two different thin planar
slabs on ground plane. This work is useful for analyzing the
radiation and scattering from edges on electrically large complex
platforms. Platforms involving modern naval ships often contain
material treatments over their otherwise metallic surfaces to control
their scattering. Also modern antenna platforms may be built from
composite materials. Furthermore, in many of these naval applications,
there could be several antennas mounted on the same platform for
multi-functional communication systems; thus it is important not only
to be able to predict the effects of the platform on the performance of
antennas placed thereon, but it is also important to predict the effects
of mutual coupling between such antennas on a common platform. It
is possible to control antenna mutual coupling by inserting material
treatments around antennas in order to decrease the coupling. It
is therefore clear that efficient and reliable computational tools for
analyzing and accurately predicting the performance of such antennas
which operate in the presence of material coated complex metallic
platforms are crucial to the design and the development of modern
antenna systems for naval and other applications.

It is noted that material coatings can be classified as double
positive/double negative (DPS/DNG). DPS materials are those which
exhibit positive values of electrical permittivity and permeability while
DNG materials are supposed to exhibit negative values for these
quantities [3–6]. One can also have materials with one of their electrical
parameters positive with the other being negative; all of these types of
materials are included in the UTD solutions developed in this work.

In this paper, it is of interest to extend the normal incidence
solution as discussed in [7] in order to treat the more general case
of skew (or oblique) incidence (three-dimensional 3-D). Plane wave
(for oblique or skew incidence) and spherical wave illumination are
considered here. The geometry of the problem is shown in Fig. 1(a).
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Previous works dealing with the analytical solutions via the W-
H solution to diffraction by a junction between two different thin
planar material slabs on a perfect electric conductor (PEC) ground
plane [8, 9] generally replace the original coated metallic surfaces or
material slabs by approximate impedance boundary condition. The
latter approximation allows one to arrive at a rigorous analytical
solution to the resulting approximate problem configuration. These
previous works primarily address the scattering problem in which the
illumination is a uniform plane wave that is incident on the thin
material discontinuity. In contrast, the present work is expected to
be very useful not only to the analysis of scattering situations but also
to antenna problems which are equally importance from a practical
standpoint. Alternatively, the MZ is another option for solving the
configuration with the thin material discontinuities. All of these
solutions [10–15] are based on the MZ method. Unlike W-H and MZ
solutions, the solution developed in this work recover the proper local
plane wave Fresnel reflection and transmission coefficients (FRTCs),
and surface wave constants, respectively, for the actual material, and
they also allow the material to be both double positive (DPS) or double
negative (DNG). Furthermore, the present works provides solutions for
finite sources on or near such structures. In addition, it is important
to note that the expressions present in this paper are appropriately
approximated via physical reasoning so that they can be made free of
the complicated integral forms of the W-H split (or factorization) and
MZ functions.

This paper is organized as follows. Section 2 describes how one
can arrive with an ansatz for the problem of a junction between
two different thin planar material slabs on ground plane with a skew
incident plane wave. The ansatz is very useful for arriving the present
approximate UTD ray solution of the particular problem with a skew
incident plane wave excitation. The extension of the approximate UTD
solution to treat the case of spherical wave excitation is discussed in
Section 3. The solutions from Sections 2 and 3 are in the form of a
plane wave spectral (PWS) integral. One can asymptotically evaluate,
in closed form, the PWS integral by using the steepest descent method
discussed in Section 4. The total and scattered fields from canonical
problems of interest are calculated in Section 5 using the present UTD
solution and are shown to compare very well with the MZ solution
obtained from [10]. It is noted that all of the fields in this work
are assumed to have an ejωt time dependence which is suppressed
throughout the paper.
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Figure 1. Canonical of interest. (a) 3-D junction between two
different, thin, planar DPS/DNG material slabs on a PEC ground
plane illuminated by a ẑ-directed current moment. (b) Thin, planar
DPS/DNG material half plane on an entire PEC ground plane
illuminated by a skew incident plane wave excitation.

2. ANSATZ FOR THE OBLIQUELY INCIDENT PLANE
WAVE ILLUMINATION CASE WITH ONE FACE BEING
PEC

The solutions to corresponding 3-D problems (skew incidence) in
Fig. 1(a) can be obtained by extending the two dimensional (2-D)
solution [7] via an approach similar to that in [8]. It is known that
the normal field components Ey and Hy satisfy the Helmholtz scalar
equation and impedance boundary conditions independently. This
leads to a decoupled solution separately for Ey and Hy. Thus it is
convenient to start an ansatz, based on the simplification of a related
effective 2-D W-H solution [9] for the normal field components in the
case of a unit amplitude, plane wave at skew incidence when it is
applied to the special case in Fig. 1(b) where the n-face (x < 0, y = 0,
z) is assumed to be a PEC. In particular, the PWS integral for the
diffraction of an obliquely incident plane wave by a two part grounded
material slab is first constructed from the ansatz provided by the W-H
solution [8]. Thus, the normal components of total field for y > 0 (free
space) for the problem of interest may be expressed as

Ūy = Ū i
y + Ū s

y (1)
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where Ūy denotes ŷ

[
Ey

ηoHy

]
. Here Ey represents the total electric field

for the TE case and Hy represents the total magnetic field for the
TM case. Also ηo is the intrinsic impedance of free space. The Ū s

y is

ŷ

[
Es

y
ηoH

s
y

]
. Note that Es

y (or Hs
y) is the ŷ-directed electric (or magnetic)

scattered field. The incident uniform plane wave Ū i
y is ŷ

[
Ei

y

ηoH
i
y

]
, where

Ei
y (or H i

y) is the ŷ-directed electric (or magnetic) incident field, which
is given by

Ū i
y = Ūoye

(jk′xx+jk′yy+jk′zz) (2)

where Ūoy denotes ŷ

[
Eoy

ηoHoy

]
. The Eoy and Hoy are assumed to be

unity for convenience. The k′x, k′y, and k′z are given by

k′x = k sinβ′o cosφ′; k′y = k sinβ′o sinφ′; k′z = k cosβ′o (3)

with 0 < β′o < π and 0 ≤ φ′ ≤ π.
Following the form of the W-H solution for the canonical two part

problem in [8], the scattered field Ū s
y can also be expressed as

Ū s
y = ¯̄Ro(φ′)Ūoye

(jk′xx−jk′yy+jk′zz) + Ūp
y (4)

where ¯̄Ro(φ′) is the o-face FRC, namely

¯̄Ro(φ′) =
[Ro

e(φ
′) 0

0 Ro
h(φ′)

]
(5)

where

Ro
e,h(φ′) =

P o
e,h(φ′)

Qo
e,h(φ′)

(6)

with
P o

e,h(φ′) = sinφ′ − δo
e,h/ sinβ′o (7)

and
Qo

e,h(φ′) = sinφ′ + δo
e,h/ sinβ′o (8)

where

δo
e = −jYdN cot(N τkd), δo

h = jZdN tan(N τkd) (9)

with kd = k
√

εrµr, Zd =
√

µr/εr, Yd = 1/Zd, N =√
1− η sin2 β′o sin2 φ′ and η = 1/µrεr. The first term on the RHS

of (4) is chosen here to correspond to the field reflected from an
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“unperturbed” surface of a thin material slab of infinite extent on a
PEC plane with the same material and thickness as that on the o-face
(x > 0, y = 0, z). The second term on the RHS of (4) constitutes
“perturbation” to the first term which results from the fact that the
actual problem in Fig. 1(b) contains a PEC for the n-face (x < 0,
y = 0, z). The “perturbed” field Ūp

y can be expressed in a manner
similar to that done earlier in [7] for the 2-D case. One can start to
rewrite (5) in [7] as

up
z(ρ, φ) ∼= − 1

2πj

∫

Cα

dαRe,h(α)
[

uoz

cosα + cos φ′

]
e−jkρ cos(α−φ). (10)

where the following identity has been employed, namely:

sec
(

α + φ′

2

)
∓ sec

(
α− φ′

2

)
=

4
cosα+cos φ′

{
sinα/2 sinφ′/2
cosα/2 cos φ′/2

}
(11)

with

Re(α) = [Ro
e(α)−Rn

e (α)] 2 cosα/2 cos φ′/2
Rh(α) = [Ro

h(α)−Rn
h(α)] 2 sinα/2 sin φ′/2

and uoz is Eoz (or Hoz) for the TE (or TM) case. Then the integral
in (10) can be expressed in the k̃x plane (rectangular coordinate
system) as

up
z(x, y) ∼= − 1

2πj

∫ ∞

−∞

dk̃x

k̃y

Re,h(α)
[

uoz

k̃x + k̃′x

]
e−jk̃xx−jk̃yy. (12)

in which k̃x = k cosα, k̃y = k sinα and k̃′x = k cosφ′. The up
z denotes

the perturbed field corresponding to Ep
z (or Hp

z ) for TE (or TM) and
the uoz denotes Eoz (or Hoz) for TE (or TM) which is assumed to be
unity here. Next one can obtain the 2-D normal component of the
perturbed field up

y from up
z in (12) by using Maxwell’s equations. One

can then employ the inverse Fourier transform and with k replaced
by kt = k sinβo. The 3-D PWS integral can be conjectured from 2-D
PWS integral as

Ūp
y (x, y, z) ∼ − 1

2πj

∞∫

−∞

dkx

ky

¯̄R(α) ·
[

Ūoy

kx + k′x
+ W

]
e(−jkxx−jkyy+jk′zz)

(13)

where Ūp
y denotes ŷ

[
Ep

y

ηoH
p
y

]
. The kx and ky are given by

kx = k sinβo cosα; ky = k sinβo sinα.



Progress In Electromagnetics Research, PIER 102, 2010 233

The W is an unknown constant column vector which was absent in

the 2-D situation and W is ŷ

[
A
B

]
. It is necessary to introduce this

unknown constant in this 3-D situation to suppress the nonphysical
poles, which may occur in the tangential field components Ez and Hz

for the skew incidence case. In addition, this unknown constant W will
make the 3-D PWS integral in (13) to recover the 2-D PWS integral
when β′o → π/2 or at normal incidence. This unknown constant W
will be determined later. It is noted that one can obtain the same
PWS integral as shown in (13) if the same ansatz as explained in [7]
is used to heuristically synthesize the PWS integral from the available
3-D W-H in [8]. The ¯̄R in (13) is given by

¯̄R(α) =
[Rh(α) 0

0 Re(α)

]
(14)

In the above, the reflection coefficient Rn
e (α) = −1 and Rn

h(α) = 1 for
the n-face because it is PEC in this special canonical problem. It is
important to note that the Ūp

y (x, y, z) in (13) can be recovered from
the up

y(x, y) when the plane wave is normal incident (β′o = π/2) where
cosβ′o = ŝi · ẑ. From (13), one can easily obtain the vector potentials
Ā = ŷAy and F̄ = ŷFy directly in terms of Ep

y and Hp
y from the usual

relations between fields and potentials [16]. Thus, from (13), one can
obtain

Ay = −ωµoεo

2π

∞∫

−∞

dkx

ky
Rh(α)

[
Eoy

kx + k′x
+ A

]
1

k2 − k2
y

e(−jkxx−jkyy+jk′zz)

(15)
and

Fy = −ωµoεo

2πηo

∞∫

−∞

dkx

ky
Re(α)

[
ηoHoy

kx + k′x
+ B

]
1

k2 − k2
y

e(−jkxx−jkyy+jk′zz)

(16)
where εo and µo are the permittivity and permeability of free space as
usual. Next all the remaining components of the external electric and
magnetic fields can be found from these vector potentials. It follows
that the “perturbed” tangential field components Ep

z and Hp
z can thus

be expressed as

Ep
z (x, y, z) ∼ 1

2πj

∞∫

−∞

dkx

ky(k2 − k2
y)

{
kkxRe(α)

[
ηoHoy

kx + k′x
+ B

]

+kzkyRh(α)
[

Eoy

kx + k′x
+ A

]}
e(−jkxx−jkyy+jk′zz) (17)
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ηoH
p
z (x, y, z) ∼ 1

2πj

∞∫

−∞

dkx

ky(k2 − k2
y)

{
kykzRe(α)

[
ηoHoy

kx + k′x
+ B

]

−kkxRh(α)
[

Eoy

kx + k′x
+ A

]}
e(−jkxx−jkyy+jk′zz) (18)

where k2
y = k2

t − k2
x and k2

z = k2 − k2
t . One notes that from the two

preceding equations there are two poles at kx = ±jk′z in (17) and (18),
whose residues introduce spurious field contributions which do not have
a physical meaning. Therefore, one needs to remove those spurious
residues. The latter can be suppressed by using the unknown constant
W , which was introduced earlier in (13), only for this purpose, namely
to suppress those spurious two poles. It follows from (17) that

±jR±e (α)
[

ηoHoy

k±x + k′x
+ B

]
= −R±h (α)

[
Eoy

k±x + k′x
+ A

]
(19)

where the superscript ± corresponds to the residue at the pole location
kx = ±jk′z. One can solve for the unknown constants A and B
from (19).

It is more convenient to evaluate the integration in the angular
spectral domain; hence, one introduces a transformation, kx =
k sinβo cosα, ky = k sinβo sinα, and kz = k cosβo, in which the α is a
complex angular spectral variable. Also one replaces the x and y by the
cylindrical polar coordinate quantities ρ cosφ and ρ sinφ, respectively
with ρ =

√
x2 + y2. The expressions in (17) and (18) can be expressed

in the new α-domain as follows:

Ep
z (r̄) ∼ − 1

2πj

∫

Cα

dα
sinβo

∆(α)

{
cosαRe(α)

[
ηoHoy

cosα + cosφ′
+ B

]

+cosβo sinαRh(α)
[

Eoy

cosα+cos φ′
+A

]}
e−jkρ sin βo cos(α−φ)ejkz cos β′o (20)

ηoH
p
z (r̄) ∼ − 1

2πj

∫

Cα

dα
sinβo

∆(α)

{
− cosαRh(α)

[
Eoy

cosα + cosφ′
+ A

]

+cosβo sinαRe(α)
[

ηoHoy

cosα+cosφ′
+B

]}
e−jkρ sin βo cos(α−φ)ejkz cos β′o (21)

where ∆(α) = 1− sin2 βo sin2 α and

A =
sinβo cosβo

∆(φ′)
[
ξR+R−Eoy − {cosφ′ tanβo + jζ}ηoHoy

]

B = −sinβo cosβo

∆(φ′)
[{cosφ′ tanβo + jζ}Eoy + ξηoHoy

]
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with ξ = 2
R++R− , ζ = R+−R−

R++R− , and R± = R±h
R±e , in which

R± =
[Rh (α±o )− 1] sin α±o /2 sin φ′/2[Re

(
α±o

)
+ 1

]
cosα±o /2 cos φ′/2

with α±o = π/2 ± j ln((1 + cosβo)/ sinβo) by using cos−1 z = π/2 +
j ln(jz +

√
1− z2). On using the identity,

4
cosα + cosφ′

{
sinα/2 sinφ′/2
cosα/2 cosφ′/2

}
= sec

(
α + φ′

2

)
∓ sec

(
α− φ′

2

)
(22)

and after some manipulations, one can have the “perturbed” field in a
compact form, namely,

Ūp
pw(r̄) ∼ − 1

2πj

∫

Cα

dα
sinβo

∆(α)∆(φ′)

{
C(α)T (α) · ¯̄Dc(α, φ′)

+T u(α) · U(α, φ′) + T v(α) · V (α, φ′)
}

· T (φ′) · Ūoze
−jkρ sin βo cos(α−φ)ejkz cos β′o (23)

where C(α) = cos2 βo − sin2 βo cosα cosφ′, Ūp
pw = ẑ

[
Ep

z

ηoH
p
z

]
, and

T (α)=
[

cosα cosβo sinα
cosβo sinα − cosα

]
; T u(α)=

[ − cosα cosβo sinα
cosβo sinα cosα

]

T v(α) =
[− cosβo sinα cosα

cosα cosβo sinα

]

U(α, φ′) =
[
Ue 0
0 Uh

]
; V (α, φ′) =

[
Vh 0
0 Ve

]

¯̄Dc(α, φ′) =
[Dc

e 0
0 Dc

h

]
; Ūoz = ẑ

[
Eoz

ηoHoz

]
,

with
Ue = sinβo cosβo2 cos α/2 cos φ′/2(Re + 1)jζ
Uh = sinβo cosβo2 sin α/2 sin φ′/2(Rh − 1)jζ

Ve = sinβo cosβo2 cos α/2 cos φ′/2(Re + 1)ξR+R−
Vh = sinβo cosβo2 sin α/2 sin φ′/2(Rh − 1)jξ.

The dyads T , T u, T v, U and V in the above are expressed in matrix
form for convenience. The Dc

e,h are defined as

Dc
e,h(α, φ′) = ±1

2
[Ro

e,h(α)−Rn
e,h(α)

][
sec

(
α− φ′

2

)
± sec

(
α + φ′

2

)]
,

(24)
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with Ro
e,h(α) from (6) and Rn

e,h(α) = ∓1. It is noted that one can
write Ūoy in terms of Ūoz by employing incident vector potentials, Ai

z

and F i
z , which can be obtained via inspection, namely:

Ai
z =

jωµoεo

k2 − k′2z
Ei

z; F i
z =

jωµoεo

k2 − k′2z
H i

z

where Ei
z = Eoze

(jk′xx+jk′yy+jk′zz) and H i
z = Hoze

(jk′xx+jk′yy+jk′zz). The
normal field components of incident field denoted by Ūoy can then be
obtained from the incident vector potentials, Ai

z and F i
z . The result

provides the transformation matrix ¯̄T (φ′) given above.
Next, the (23) can be evaluated by using the SDP asymptotic

integration technique when κ is large, where κ = kρ sinβo. One can
rewrite (23) symbolically as

Ūp
pw ∼

∫

Cα

dαF(α)eκf(α), 0 ≤ φ ≤ π (25)

where

F = − 1
2πj

sinβo

∆(α)∆(φ′)

{
C(α)T (α) · ¯̄Dc(α, φ′) + T u(α) · U(α, φ′)

+T v(α) · V (α, φ′)
}
· T (φ′) · Ūoze

jk cos β′oz

and f(α) = −j cos(α − φ). It is noted that the F has poles at
αr = π− φ′, and αswo. Deforming the contour Cα to the SDP contour
allows one to express (23) as

Ūp
pw ∼ −2πj[Res{F(αr)eκf(αr)}U(αr − φ)

+Res{F(αswo)eκf(αswo)}U(αswo − φ)] +
∫

SDP

dαF(α)eκf(α) (26)

where αr is the GO reflected wave pole which provides the GO reflected
field contributions, Ū ro

pw and Ū rn
pw. The αswo is the SW pole, which

yields either a forward surface wave (FSW) or a backward surface
wave (BSW) field contribution, Ū sw

pw . The U(·) is the usual Heaviside
unit step function. Applying Cauchy’s residue theorem, one can obtain
Ū ro

pw, Ū rn
pw, and Ū sw

pw as follows:

Ū ro
pw = − 1

∆(φ′)
T (π − φ′) · ¯̄Ro(φ′) · T (φ′)

· Ūoze
jkρ sin βo cos(φ+φ′)ejkz cos β′oU(π − φ′ − φ) (27)

Ū rn
pw = ¯̄Rn · Ūoze

jkρ sin βo cos(φ+φ′)ejkz cos β′oU(π − φ′ − φ) (28)
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Ū swo
pw =

C(αo
sw)

∆(αo
sw)∆(φ′)

T (αo
sw) · ¯̄Rswo(αo

sw) · T (φ′)

·Ūoze
jkρ sin βo cos(αo

sw−φ)ejkz cos β′oU(αo
sw − φ) (29)

where ¯̄Ro is defined in (5), ¯̄Rn =
[−1 0

0 1

]
, and ¯̄Rswo =

[
Rswo

e 0
0 Rswo

h

]
.

The Rswo
e,h is defined as

Rswo
e,h (αo

sw, φ′)= ± P o
e,h(αo

sw)

2Qo′
e,h(αo

sw)

[
sec

(
αo

sw − φ′

2

)
± sec

(
αo

sw + φ′

2

)]
. (30)

The Qo′
e,h(αo

sw) is the derivative of Qo
e,h(α) in (8) with respect to α

and evaluated at α = αo
sw. The Ū ro

pw and Ū rn
pw represents the GO fields

reflected from o and n-face, respectively. A closed form evaluation of
the SDP integral in (26) via the non-uniform steepest descent method,
yields the non uniform diffracted field Ūd

pw as

Ūd
pw∼

1
∆(φ)∆(φ′) sin βo

[
C(φ, φ′)T (φ) · ¯̄Dc(φ, φ′) · T (φ′) + W

]
·Ūoz

e−jks

√
s

(31)

where ¯̄Dc =
[Dc

e 0
0 Dc

h

]
with Dc

e,h is defined as

Dc
e,h(φ, φ′) = ±1

2
[Ro

e,h(φ)−Rn
e,h(φ)

] [
sec

(
φ− φ′

2

)
± sec

(
φ + φ′

2

)]
,

(32)
and where Ro,n

e,h are defined above. The W is given by

W = −e−jπ/4

√
2πk

[
T u(φ) · U + T v(φ) · V

]
· T (φ′). (33)

The total field Ūpw can be obtained by

Ūpw ∼ Ū i
pw + Ū s

pw. (34)

The ẑ-directed tangential component of a uniform incident plane wave

Ū i
pw is ẑ

[
Ei

pw

ηoH
i
pw

]
, where Ei

pw (or H i
pw) is the electric (or magnetic)

incident field, which is given by

Ū i
pw = Ūoze

(jk′xx+jk′yy+jk′zz) (35)

where as before Ūoz denotes ẑ

[
Eoz

ηoHoz

]
. The Eoz and Hoz are assumed

to be unity here. The Ū s
pw can be found by using the same approach
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for finding the Ūp
pw from Ūp

y . One can then obtain the Ū s
pw as

Ū s
pw∼

1
∆(φ′)

T (π−φ′)· ¯̄Ro(φ′)·T (φ′)·Ūoze
jkρ sin βo cos(φ+φ′)ejkz cos β′o+Ūp

pw.

(36)
By substituting (36) and (26) (together with (27)–(31)) into (34), one
can obtain the total ẑ-directed tangential field components Ūpw.

It is important to note that the solution in (31) still satisfies all
the crucial physical properties, such as the PEC boundary condition
on the n-face, the Karp-Karal lemma on the o-face despite the
approximations used to arrive at (23). Furthermore, the approximated
solution in (31) still recovers the PEC solution when the material slab
is removed. Thus, the solution in (26) (and (31)), which is based
on the approximate expression of (23), clearly retains many of the
important physical properties, thereby lending more confidence to the
heuristic approximation of (23). However, the analytical expression
for the approximate diffracted Ūd

pw in (31) does not satisfy reciprocity,
but is expected to provide numerical results which nearly satisfy the
reciprocity principle. On the other hand, the technique shown in [7]
can be easily applied to restore the reciprocity condition into the
Ūd

pw in (31). The desired ansatz is now established by the set of
Equations (34)–(36) and (23), respectively which allows one to obtain
a corresponding solution for the case of spherical wave incidence.

3. EXTENSION TO TREAT THE CASE OF SPHERICAL
WAVE EXCITATION WITH ONE FACE BEING PEC

A UTD solution for a thin planar material half plane on an entire
PEC ground plane illuminated by spherical wave or an elemental
current moment is developed in this section. A spherical wave with
an arbitrary field polarization transverse to the incident ray direction,
ŝi, can be created by superimposing the fields of ẑ-directed electric
and magnetic current moments at the origin of the spherical wave.
The incident, ẑ-directed, electric field, Ei

z, (or the magnetic field, H i
z)

at an observer location r̄(ρ, φ, z), which is produced by an electric (or
magnetic) current moment of strength dp̄e = ẑdpez (or dp̄m = ẑdpmz)
at r̄′(ρ′, φ′, z), respectively, can be expressed as

Ū i
z ≡ ẑ

{
Ei

z

H i
z

}
= −jkẑ

{
Zodpez

Yodpmz

}
sin2 βoG̃o

(
k

∣∣r̄ − r̄′
∣∣) (37)

and

G̃o

(
k

∣∣r̄ − r̄′
∣∣) =

e−jkSi

4πSi
(38)
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Si =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + (z − z′)2. (39)
If one assumes that the current moment is sufficiently far from the
o face so that the incident spherical wave generates “locally” plane
at the line of discontinuity (or edge), then one may employ (34)
and (36) obtained for the skew incident plane wave case to provide the
ẑ components of the scattered field for the spherical wave incidence
case as:

Ū s
z ∼ −jk

{
Zodpez

Yodpmz

}
sin2 βo

1
∆(φ′)

· T (π − φ′) · ¯̄Ro(φ′) · T (φ′) · Ūoz
e−jkSr

√
Sr

+ Ūp
z (40)

where the first term on the RHS of (40) represents as before the field
scattered from the “unperturbed” structure, which is assumed to be
a thin planar material slabs of infinite extent with PEC backing that
has the same thickness and electrical parameters as the PEC backed
material pertaining to the o-face in the actual or original problem
geometry of Fig. 1(b). Also the Ūoz in (40) is defined in Section 2.
Under the present assumption of source far from the surface at y = 0,
one can show that the unperturbed scattered field is asymptotically
given by the first term on the RHS of (40) which is the GO reflected
field, where ¯̄Ro is the FRC for this unperturbed material surface with
PEC ground plane, and Sr is the GO ray path corresponding to the GO
field reflected from that unperturbed surface. The ¯̄Ro(φ′) is defined
in (5). Also,

Sr =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ + φ′) + (z − z′)2. (41)
The Ūp

z in (40) represents the “perturbation” to the first term on the
RHS of (40). By employing an inverse Fourier integral transformation,
one can find the Ūp

z for the 3-D spherical wave incidence case from
the up

z for the 2-D cylindrical wave incidence case as explained in [17],
namely

Ūp
z =

1
2π

∞∫

−∞

[∫

Cα

(
− 1

2πj

)
Ā(α, φ′)Go[kts(α)]e−jkz(z′−z) dα

]
dkz. (42)

The Ā(α, φ′) is an appropriate spectral amplitude or weight function,
and Go[kts(α)] is defined as

Go[ks(α)] =
−j

4
H(2)

o [ks(α)] (43)

with k replaced by kt, in which k2
t = k2 − k2

z . By following the steps
in [17], one can further rewrite (42) in terms of the modified cylindrical
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Bessel function of the second kind and of order zero, Ko[jkts(α)], to
yield

Ūp
z = − 1

8π3j

∫

Cα

dαĀ(α, φ′)

∞∫

−∞
dkzKo[jkts(α)]e−jkz(z′−z) (44)

where for large kts(α)

Ko[jϑ(ς)] =
√

π

2jϑ(ς)
e−jϑ(ς).

It is noted that Ko(jϑ) = −j π
2 H

(2)
o (ϑ). One can next apply the

following identity∫ ∞

−∞
dkzH

(2)
o [kts(α)]e−jkz(z′−z) ≡ 2j

e−jkS(α)

S(α)
(45)

in (44). This leads to

ūp
z = − 1

2πj

∫

Cα

dαĀ(α, φ′)
e−jkS(α)

4πS(α)
(46)

with
S(α) =

√
ρ2 + ρ′2 + 2ρρ′ cos(α− φ) + (z − z′)2 (47)

It is important to note that if the current moment is not assumed to
be sufficiently far from the o and n faces, then additional contributions
(not present in (40)) must be included. Such additional contributions
arise because the current moment can in some situations strongly
excite SWs directly in the material; these SWs become incident on
the discontinuity at “0” to produce a reflected SW and a transmitted
SW, as well as a diffracted space wave. The reflected and transmitted
SWs can be deduced from the W-H solution to appropriate, simpler,
canonical two-part diffraction problems in which the excitation is
an incident SW. In the radiation problem, these SW effects are not
significant. Only the diffraction of the incident SW by the discontinuity
contributes to the radiation field; its effect is discussed in [18] for a
line source excitation. The spectral function Ā is proportional to the
strength of the current moment, and it may be expressed as

Ā(α, φ′) ≡ −jk

{
Zodpez

Yodpmz

}
sin2 βo

¯̄D(α, φ′) · Ūoz (48)

where the unknown spectral weight ¯̄D is to be determined using the
ansatz of Section 2. Let ρ′ = s′ sinβo, ρ = s sinβo, and z = −s cosβo.
Thus,

S2(α) = (s + s′)2
{

1− 2ss′

(s + s′)2
sin2 βo[1− cos(α− φ)]

}
(49)
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In order to identify ¯̄D, the exponential in (46) with (49) may be
approximated by the first two terms of its binomial expansion for large
k ss′

s+s′ sin
2 βo, which is assumed here to be the large parameter (for the

asymptotic development). Then, (46) becomes

Ūp
z ∼ − 1

2πj

∫

Cα

Ā(α, φ′)
e−jk(s+s′)

4πS(α)
e
jk ss′

s+s′ sin2 βo[1−cos(α−φ)]
dα. (50)

If the current moment is allowed to receded to infinity, i.e., if s′ →∞,
while s is kept finite, then one obtains the scattered field Ūp

pw due to
plane wave illumination, namely,

Ūp
z ∼ Co(ks′)Ūp

pw (51)

where Co is the current moment factor given by

Co(ks′) = −jk

{
Zodpez

Yodpmz

}
sin2 β′o

e−jks′

4πs′
(52)

and

Ūp
pw = − 1

2πj

∫

Cα

¯̄D(α, φ′) · Ūoze
−jkρ sin βo cos(α−φ)ejkz cos β′o dα. (53)

By directly comparing (53) with the desired ansatz in (23), one can
easily identify ¯̄D by inspection to be

¯̄D(α, φ′) =
sinβo

∆(α)∆(φ′)

{
C(α)T (α) · ¯̄Dc(α, φ′)

+T u(α) · U(α, φ′) + T v(α) · V (α, φ′)
}
· T (φ′). (54)

4. ASYMPTOTIC ANALYSIS

Next one can asymptotically evaluate, in closed form, the integral
in (50) by using the steepest descent method. One can start this
evaluation by rewriting (50) symbolically as

Ūp
z ∼

∫

Cα

dαF(α)eκf(α), 0 ≤ φ ≤ π (55)

where the κ denotes k ss′
s+s′ sinβ2

o , f(α) = j[1− cos(α− φ)] and

F = − 1
8π2j

{
Zodpez

Yodpmz

}
sin2 β′o

sinβo

∆(α)∆(φ′)

{
C(α)T (α) · ¯̄Dc(α, φ′)

+T u(α) · U(α, φ′) + T v(α) · V (α, φ′)
}
· T (φ′) · Ūoz

e−jk(s+s′)

S(α)
.
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After deforming the integral contour of (55) to the steepest descent
path (SDP) through the saddle point at α ≡ αs = φ, it allows one to
express (55) for large κ as

Ūp
z ∼ −2πjRes

{
F(αr)eκf(αr)

}
U(αr − φ)

−2πjRes
{
F(αo

sw)eκf(αo
sw)

}
U (αo

sw − φ) +
∫

SDP

dαF(α)eκf(α). (56)

The reflected field Ū r
z is given by the sum of the “unperturbed” GO

reflected field contained in the first term on the RHS of (40) together
with the residue contribution from the pole at α = αr = π−φ′ in (56),
as

Ū r
z =−jk

{
Zodpez

Yodpmz

}
sin2 β′o

1
∆(φ′)

T (π − φ′) · ¯̄R(φ′) · T (φ′) · Ūoz
e−jkSr

4πSr

(57)
where Sr is defined in (41), and

¯̄R(φ′) =

{
¯̄Ro(φ′) if φ + φ′ < π
¯̄Rn(φ′) if φ + φ′ > π

(58)

in which ¯̄Ro,n denotes the FRC as defined earlier. Also, Ū sw
z is given

by the residue arising from the SW pole α = αo
sw in (56) as

Ū sw
z =

C(αo
sw)

∆(αo
sw)∆(φ′)

T (αo
sw) · ¯̄Rswo(αo

sw) · T (φ′)

· Ūoz
e−jkS(αo

sw,φ)

4πS(αo
sw, φ)

U (αo
sw − φ) (59)

It is assumed that the material slab is sufficiently thin so only the
lowest TM surface wave can propagate for the material slab with PEC

ground plane. Thus, the ¯̄Rswo =
[
0 0
0 Rswo

h

]
. The SDP integral, which

yields the diffracted field Ūd
z symbolically is given by

Ūd
z =

∫

SDP

F(α, φ′)eκf(α) dα. (60)

As for the normal incidence case discussed in [7], one can decompose
the spectral function F(α) in the integrand of (60) in to one contains
the GO type pole and remaining part containing the SW type pole.
The former can be conveniently evaluated by using the Pauli-Clemmow
(PC) approach while the latter can be performed by the Van der
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Waerden (VDW) approach. The expression for the UTD first order
diffracted field is then found to have the general form as

Ūd
z = Ū i

z(Qe) · ¯̄D(φ, φ′)A(s, s′)e−jks (61)

where ¯̄D = ¯̄Dgo + ¯̄Dsw. The Ū i
z(Qe) represents the incident field at

the point of diffraction Qe, and A(s, s′) is a spread factor given by
A(s, s′) =

√
s′

s(s+s′) . Here s is the distance from Qe to an observation

point, and the s′ is the distance from Qe to the source point. The ¯̄Dgo

is based on the PC method while ¯̄Dsw is based on the VDW method;
they are given by

¯̄Dgo =
1

∆(φ)∆(φ′) sinβo

[
C(φ, φ′)T (φ) · ¯̄Dc(φ, φ′) · T (φ′) + W

]
, (62)

and
¯̄Dsw =

1
∆(αo

sw)∆(φ′) sinβo

[
C

(
αo

sw, φ′
)
T (αo

sw) · ¯̄Dcsw(αo
sw, φ′) · T (φ′)

]

(63)

where the ¯̄Dc =
[
Dc

e 0
0 Dc

h

]
and ¯̄Dcsw =

[
Dsw

e 0
0 Dsw

h

]
with Dc

e,h and

Dsw
e,h are given by

Dc
e,h(φ, φ′) = ∓ e−jπ/4

2
√

2πk

[
Γo

e,h(φ, φ′)− Γn
e,h(φ, φ′)

]

[
sec

(
φ− φ′

2

)
FKP

(
kLa−go

)± sec
(

φ + φ′

2

)
FKP

(
kLa+

go

)]
, (64)

and

Dsw
e,h(φ, φ′; αo

sw) = ∓ e−jπ/4

2
√

2πk
Rswo

e,h (αo
sw, φ′)

sin
(

αo
sw−φ

2

) [1− FKP (kLao
sw)] + dswo

e,h (φ, φ′; αo
sw)


 (65)

dswo
e,h (φ, φ′; αo

sw) =
P o

e,h(αo
sw)

Qo
e,h(φ)

[
sec

(
αo

sw − φ′

2

)
± sec

(
αo

sw + φ′

2

)]
. (66)

The Γo
e,h is an ad hoc modification so as to preserve reciprocity.

It is given by

Γo
e,h(φ′) =

2 sin φ
2 sin φ′

2 − δo
e,h/ sinβo

2 sin φ
2 sin φ′

2 + δo
e,h/ sinβo

(67)
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where δo
e = −jYdN cot(Nτkd) and δo

h = jZdN tan(Nτkd) with N =√
1− η4 sin2 βo sin2 φ

2 sin2 φ′
2 . The FKP (kLa±go) is the well-known UTD

edge transition functions defined in [1]. The Γn
e,h = ∓1 because the n-

face is PEC. It is important to note that the UTD solutions for a
junction between two different planar material slabs on a PEC ground
plane at skew incidence as shown in Fig. 1(a) can be easily given in
the same form as (61)–(64) except the Γn

e,h(φ′) is now

Γn
e,h(φ′) =

2 sin φ
2 sin φ′

2 − δn
e,h/ sinβo

2 sin φ
2 sin φ′

2 + δn
e,h/ sinβo

(68)

with the proper substitution of n-face electrical permittivity and
permeability, εrn and µrn, respectively.

5. NUMERICAL RESULTS

Numerical results for a DPS material junction shown in Fig. 1(a)
based on the work presented in this paper referred to as UTD are
compared with the results of the MZ solution [10]. There is a very
good agreement, with less than ±1 dB differences. In Figs. 3 and 4,
only the UTD solutions developed in this paper are shown. It is noted
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Figure 2. Comparison of scattered fields of UTD and MZ solutions
for a DPS material junction excited by a uniform skew incident plane
wave shown in Fig. 1(a) where (a) TE and (b) TM at φ′ = 45◦ and
β′o = 65◦. The fields are observed at r = 5λ on the Keller cone of
diffraction. The material is λ/20 thick with (εro = 4, µro = 2) and
(εrn = 5, µrn = 1).
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that the excitation for the problem in Fig. 4 is a current moment
(dp̄e = ẑdpez or dp̄m = ẑdpmz), which produces a spherical wave,
whereas the excitation is a skew incident plane wave for Figs. 2 and 3.
It is important to note that the surface wave effects are neglected in
these plots in order to clearly test if the boundary conditions on the
first order UTD diffracted fields are properly satisfied as compared to
reference MZ solutions; otherwise the surface waves would have masked
the behavior of the diffracted fields near the boundaries. Note that it
is enough to compare the present result only with MZ solution because
the MZ and W-H solutions provide the same numerical results.
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Figure 3. Total field of UTD solution for a grounded DPS material
half plane with PEC ground plane excited by a uniform skew incident
plane wave (a) TE and (b) TM at φ′ = 60◦ and β′o = 120◦. The fields
are observed at r = 5λ on the Keller cone of diffraction. The material
is λ/10 thick with (εro = 4, µro = 2).
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Figure 4. Total field of UTD solution for a DPS material junction
excited by (a) a ẑ-directed electric current moment dpez and (b) a
ẑ-directed magnetic current moment dpmz at r′ = 7λ, φ′ = 45◦ and
θ′ = 55◦. The fields are observed at r = 15λ on the Keller cone of
diffraction. The material is λ/20 thick with (εro = 12, µro = 8) and
(εrn = 1, µrn = 4).

6. CONCLUSION

A promising approximate UTD ray solution for EM diffraction from a
junction between two different thin planar material slabs on ground
plane is presented. Unlike W-H and MZ solutions, the solution
developed in this work recovers the proper local plane wave Fresnel
reflection and transmission coefficients (FRTCs), and surface wave
constants, respectively, for the actual material, and the present solution
also allows the material to be both DPS or DNG. Furthermore, the
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present works provides solutions for finite sources on or near such
structures. In addition, it is important to note that the expressions
present in this paper are appropriately approximated via physical
reasoning so that they can be made free of the complicated integral
forms of the W-H split (or factorization) and MZ functions. This
work is useful for analyzing the radiation and scattering from edges on
electrically large complex platforms [19]. Platforms involving modern
naval ships often contain material treatments over their otherwise
metallic surfaces to control their scattering.
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