Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-02
Electromagnetic Subsurface Detection Using Subspace Signal Processing and Half-Space Dyadic Green's Function
By
Progress In Electromagnetics Research, Vol. 98, 315-331, 2009
Abstract
In this paper, one of the subspace signal processing methods, namely time reversal multiple signal classification (TR-MUSIC), is firstly employed for electromagnetic subsurface detection where the multilayered dyadic Green's function is used. Therewith, one obtains the improved location and superresolution imaging for underground detecting application. The imaging pseudo-spectrum is accordingly defined for both the echo-mode and transmit-mode TR-MUSIC methods, by analyzing the obtained multistatic response matrix. Based on the theoretical formula, we carry out the numerical simulation using the half-space dyadic Green's function in noisy scenario. The results show that the MUSIC imaging algorithm achieves the enhanced resolution and the transmit-mode method gives more robust output when performance comparison of the four methods is made, therefore indicate the TR-MUSIC could be a good candidate for subsurface detection.
Citation
Xiao-Fei Liu, Bing-Zhong Wang, and Shao-Qiu Xiao, "Electromagnetic Subsurface Detection Using Subspace Signal Processing and Half-Space Dyadic Green's Function," Progress In Electromagnetics Research, Vol. 98, 315-331, 2009.
doi:10.2528/PIER09092902
References

1. Fink, M., "Time reversal mirrors," J. Phys. D: Appl. Phys., Vol. 26, 1333-1350, 1993.
doi:10.1088/0022-3727/26/9/001

2. Prada, C., J. L. Thomas, and M. Fink, "The iterative time reversal process: Analysis of the convergence," J. Acoust. Soc. Am., Vol. 97, 62-71, 1995.
doi:10.1121/1.412285

3. Kuperman, W. A., W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, "Phase conjugation in the ocean: Experimental demonstration of an acoustic time reversal mirror," J. Acoust. Soc. Am., Vol. 103, 25-40, 1998.
doi:10.1121/1.423233

4. Zheng, W., Z. Zhao, and Z.-P. Nie, "Application of TRM in the UWB through wall radar," Progress In Electromagnetics Research, Vol. 87, 279-296, 2008.
doi:10.2528/PIER08101202

5. Zheng, W., Z. Zhao, Z.-P. Nie, and Q. H. Liu, "Evaluation of TRM in the complex through wall environment," Progress In Electromagnetics Research, Vol. 90, 235-254, 2009.
doi:10.2528/PIER09011003

6. Prada, C., S. Manneville, D. Spoliansky, and M. Fink, "Decomposition ofthe time reversal operator: Detection and selective focusing on two scatterers," J. Acoust. Soc. Am., Vol. 99, 2067-2076, 1996.
doi:10.1121/1.415393

7. Folegot, T., C. Prada, and M. Fink, "Resolution enhancement and separation of reverberation from target echo with the time reversal operator decomposition," J. Acoust. Soc. Am., Vol. 113, 3155-5160, 2003.
doi:10.1121/1.1571541

8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
doi:10.1163/156939399X01113

9. Chambers, D. and A. Gautesen, "Time reversal for a single spherical scatter," J. Acoust. Soc. Am., Vol. 109, 2616-2624, 2001.
doi:10.1121/1.1368404

10. Mordant, N., C. Prada, and M. Fink, "Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method," J. Acoust. Soc. Am., Vol. 105, 2634-2642, 1999.
doi:10.1121/1.426879

11. Gaumond, C. F., D. M. Fromm, J. F. Lingevitch, R. Menis, G. F. Edelmann, D. C. Calvo, and E. Kim, "Demonstration at sea of the decomposition-of-the-time-reversal-operator technique," J. Acoust. Soc. Am., Vol. 119, 976-990, 2006.
doi:10.1121/1.2150152

12. Rao, T. and X. Chen, "Analysis of the time-reversal operator fora single cylinder under two-dimensional settings," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2153-2165, 2006.
doi:10.1163/156939306779322503

13. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1219-1230, 2007.

14. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Trans. Antennas & Propag., Vol. 53, 1600-1610, 2005.
doi:10.1109/TAP.2005.846723

15. Devaney, A. J., E. A. Marengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am., Vol. 115, 3129-3138, 2005.
doi:10.1121/1.2042987

16. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets ," J. Acoust. Soc. Am., Vol. 115, 3042-3047, 2004.
doi:10.1121/1.1738451

17. Ammari, H., E. Iakovleva, D. Lesselier, and G. Perrusson, "MUSIC type electromagnetic imaging of a collection of small three-dimensional inclusions," SIAM J. Sci. Comput., Vol. 29, 674-709, 2007.
doi:10.1137/050640655

18. Zhong, Y. and X. Chen, "MUSIC imaging and electromagnetic inverse scattering of multiply scattering small anisotropic spheres," IEEE Trans. Antennas & Propag., Vol. 55, 3542-3549, 2007.
doi:10.1109/TAP.2007.910488

19. Chen, X. and K. Agarwal, "MUSIC algorithm for two-dimensional inverse problems with special characteristics of cylinders," IEEE Trans. Antennas & Propag., Vol. 56, 1808-1812, 2008.
doi:10.1109/TAP.2008.923333

20. Odendaal, J. W., E. Barnard, and C. W. I. Pistorius, "Two dimensional superresolution radar imaging using the MUSIC algorithm," IEEE Trans. Antennas & Propag., Vol. 42, No. 10, 1386-1391, 1994.
doi:10.1109/8.320744

21. Yoon, Y. S. and M. G. Amin, "High-resolution trough-the-wall radar imaging using beamspace MUSIC," IEEE Trans. Antennas & Propag., Vol. 56, 1763-1774, 2008.
doi:10.1109/TAP.2008.923336

22. Chew, W. C., Waves and Fields in Inhomogeneous Media, 2nd Ed., IEEE Press, 1995.

23. Xiao, S.-Q., J. Chen, X.-F. Liu, and B.-Z.Wang, "Spatial focusing characteristics of time reversal UWB pulse transmission with different antenna arrays," Progress In Electromagnetics Research B, Vol. 2, 223-232, 2008.
doi:10.2528/PIERB07112203

24. Yu, G. and T.-J. Cui, "Imaging and localization properties of LHM superlens excited by 3D horizontal electric dipoles," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 35-46, 2007.
doi:10.1163/156939307779391795