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Abstract—In this paper, one of the subspace signal processing
methods, namely time reversal multiple signal classification (TR-
MUSIC), is firstly employed for electromagnetic subsurface detection
where the multilayered dyadic Green’s function is used. Therewith,
one obtains the improved location and superresolution imaging for
underground detecting application. The imaging pseudo-spectrum
is accordingly defined for both the echo-mode and transmit-mode
TR-MUSIC methods, by analyzing the obtained multistatic response
matrix. Based on the theoretical formula, we carry out the numerical
simulation using the half-space dyadic Green’s function in noisy
scenario. The results show that the MUSIC imaging algorithm achieves
the enhanced resolution and the transmit-mode method gives more
robust output when performance comparison of the four methods is
made, therefore indicate the TR-MUSIC could be a good candidate
for subsurface detection.

1. INTRODUCTION

The time reversal imaging has been intensively studied in last
two decades in both acoustics and electromagnetics due to the
great potential application in many areas, such as nondestructive
testing, wireless sensor network surveillance, target detection
and reconnaissance. The mainly discussed imaging methods
is chronologically listed as the iterative time reversal mirror
imaging (ITRMI) [1–5], the decomposition of time reversal operator
(DORT) [6–13] and the time reversal-multiple signal classification
method (TR-MUSIC) [14–19]. The iterative time reversal mirror
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imaging is a most direct and intuitional method for target location and
imaging considering the spatial and temporal focusing characteristics
of time reversal mirror. However, since it uses the backpropagating
wave to locate the scatters or targets, the resolution is still constrained
to the Rayleigh criterion. Furthermore, the burden of iterative
backpropagation and the difficulty in determining the focusing time
arises. The DORT method uses the eigenvector in signal space of the
multistatic response matrix to retrieve the target locations in an one-
to-one manner. It evades the iterative process, therefore, releases the
burden and improves the imaging efficiency. But when it comes to
the cases with poorly resolved targets, i.e., two targets are so close
that the distance between them is much smaller than half-wavelength,
the DORT method encounters obstacle. To overcome this problem,
the TR-MUSIC algorithm, which regards to the noise space of the
multistatic response matrix or the time reversal marix, was proposed
for superresolution imaging. It does not need wave backpropagation
to locate the target and can image them at one time. The TR-
MUSIC algorithm was firstly reported by Devaney [14–16] in the area
of acoustic detection and imaging. Then it was quickly extended to the
electromagnetic areas [17–19] due to the advantages on imaging quality
and efficiency. However, most of the works were currently done in free
space background media [23]. Actually in practice, many applications,
both military and commercial, are in the scenarios with inhomogeneous
background media, such as subsurface detection, through wall imaging
and surveillance [24]. Therefore, it is beneficial to carry out the
analysis and extend the method in this case. To do so, we employ the
multilayered dyadic Green’s function in constructing the time reversal
matrix and performing MUSIC pseudo-spectrum for both transmit-
mode and echo-mode configurations.

The TR-MUSIC algorithm is different from the original MUSIC
method in statistical signal processing [20, 21]. The latter deals with
the measured radar scattering data in the frequency-angular domain
and then synthesize the covariance matrix from them to implement
the location process, whereas the former starts from the multistatic
response matrix between the transmit and receiver arrays. In this
paper, we analyze the forward propagation and inverse scattering from
the view of electromagnetic in detail to obtain the multistatic response
matrix and time reversal matrix. Trough investigating the eigenvalue
structure, it is observed that the so called signal space of the matrix
is spanned by the background Green’s function vectors evaluated at
the target position. Upon that, the singular value decomposition
of the time reversal matrix is performed so that the eigenvectors
corresponding to the non-zero eigenvalues are in the signal space, and
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the rest vectors are in the noise space which is orthogonal to the signal
space. Based on this orthogonality, the MUSIC algorithm searches
the imaging domain and locates the targets by checking the peak of
the pseudo-spectrum at the position of the targets. Furthermore, we
extended the algorithm to transmit-mode for two reasons. One is
that the transmit-mode algorithm further increases the resolution and
imaging quality due to its equivalent extended array aperture, and the
second one is that it improves the capacity of detecting more targets
and the flexibility of the algorithm.

The rest of this paper is organized as follows. In Section 2,
the derivation of the time reversal matrix is discussed in detail. It
is followed by the investigation of the eigenvalue structure and the
MUSIC pseudospectrums are defined for both echo-mode and transmit-
mode configurations. The performance analysis of the proposed
algorithm is carried out using numerical simulation in Section 3, which
validates the advantages of the proposed method. At last, Section 4
concludes the paper.

2. THEORY

In this section, the theoretical analysis is carried out to generate
the multistatic response matrix and the time reversal matrix based
on electromagnetic scattering theory and half-space dyadic Green’s
function.

2.1. The Forward Problem

We start with the model description of the detection system generally
concerned. The transceiver array, not limited to be linear or planar,
has M antenna elements located at rt

m, m = 1, 2, . . . , M , which
is usually on the earth’s surface. Each of the elements consists
of three dipole antennas oriented in the x, y and z direction with
length lmx, lmy, lmz and driving current Imx, Imy, Imz, respectively.
Therefore, the source at the mth element can be written as Jm =
(Imxlmxx̂ + Imylmyŷ + Imzlmz ẑ)δ(r − rt

m). The L scattering targets,
which are assumed to be spheres with radius al, permittivity ε(rl),
and permeability µ(rl), respectively, are located at the underground
positions rl, l = 1, 2, . . . , L. Then incident electromagnetic fields at
the location of the target Em

inc(rl), Hm
inc(rl), excited by the mth source,



318 Liu, Wang, and Xiao

can be expressed as

Em
inc(rl) = iωµ0

(
rt
m

)
G

(
rl, rt

m

) · Jm, (1)

Hm
inc(rl) =

µ0

(
rt
m

)

µ0(rl)
∇×G

(
rl, rt

m

) · Jm. (2)

where G is the multilayered dyadic Green’s function which will
be discussed in the following subsection, and µ0(r) stands for the
permeability of the background media at location r. Considering all
the antennas are excited at the same time, the incident fields upon
the targets become the sum of M incident fields under the assumption
that the multiple scattering between the targets is negligible. Writing
in the matrix form, one can obtain

Einc = P ·M · L · I. (3)
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inc(r1),ET
inc(r2), . . . ,ET

inc(rL),

HT
inc(r1),HT

inc(r2), . . . ,HT
inc(rL)

]T
;

I = [I1x, I1y, I1z, I2x, I2y, I2z, . . . , IMz]
T ;

L = diag [l1x, l1y, l1z, l2x, l2y, l2z, . . . , lMz] ;

M = diag
[
µ0

(
rt
1

)
, µ0

(
rt
1

)
, µ0

(
rt
1

)
, µ0

(
rt
2

)
, . . . , µ0

(
rt
M

)]
;

and
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where G and X is shown as follows.
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X =
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;

The scattering field, incident field and total field always hold the
relationship as Etot(rl) = Einc(rl) + Esca(rl). However, the Born
approximation is usually employed for simplicity. It is valid when
the contrast of the electrical or magnetic characteristics between the
target and the background media is small. Here, we also adopt the
Born approximation which implies that Etot(rl) = Einc(rl), and it
leads to the scattering field expressed as follows,

Esca

(
rt
m

)
=

L∑

l=1

[
4πa3

l ω
2µ0(rl)ε0(rl)

ε(rl)−ε0(rl)
ε(rl)+2ε0(rl)

·G (
rt
m, rl

)·Einc(rl)

−i4πa3
l ω

2µ0(rl)· µ(rl)−µ0(rl)
µ(rl)+2µ0(rl)

∇×G
(
rt
m, rl

)·Hinc(rl)
]

(4)
It could be written in the matrix form,

Esca =
[
G,X

]
· F ·Einc = Q · F ·Einc (5)

where

F = diag
[
F ε, Fµ

]
;

F ε = diag
[
ξ1, ξ2, . . . , ξL

]
;

Fµ = diag
[
ζ1, ζ2, . . . , ζL

]
;

ξl = −4πa3
l ω

2µ0(rl)ε0(rl)
ε(rl)− ε0(rl)
ε(rl) + 2ε0(rl)

· I3;

ζ l = −i4πa3
l ω

2µ0(rl)
µ(rl)− µ0(rl)
µ(rl) + 2µ0(rl)

· I3.

and I3 denotes identity matrix with size 3 × 3. The analysis is easy
to extended to the cases with anisotropic targets by replacing ξl and
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ζ l with the electric and magnetic polarization strength tensors of the
targets and modifying the matrix M .

Then, the voltages induced on the antenna dipoles can be obtained
in a vector form defined as: V = [V1x, V1y, V1z, V2x, V2y, V2z, . . . , VMz]T .
One arrives at,

V = L ·Esca. (6)

Combining the Eqs. (1), (5), (6), the expression of the transfer
function could be achieved and the so call multistatic response matrix
is represented as

K = L ·Q · F · P ·M · L. (7)

Furthermore, the time reversal matrix is

T = K
∗ ·K. (8)

where ∗ denotes the conjugate transpose.

2.2. The TR-MUSIC Algorithm

It has already been mentioned that the DORT imaging can
be performed using the back-propagation of the singular vectors
associated to nonzero singular values of the time reversal matrix [6, 7].
But it requires that the targets are well-separated, which means that
they are not sufficiently separated from each other. Furthermore,
the DORT method can only locate individual target with one back-
propagation of one set of singular vector in acoustic applications. But
in electromagnetic application, the relationship become more complex
due to polarization, array configuration, shape and electromagnetic
characteristics of the targets, and so on. Therefore the TR-MUSIC
algorithm is proposed and expected to become our possible solution to
this problem. There is a little similarity to the DORT method in the
derivation because it is also based on the singular value decomposition
of the K matrix, which has the so called signal subspace Ss spanned
by the background Green’s function vectors evaluated at the target
locations. The singular system is given as follows,

Kuj = σjυj ,

K
∗
υj = σjuj .

(9)

where σj , uj , and υj are the jth singular value and the jth column
vector of the orthonormal matrices U and V ∗, respectively. Then we
can draw that the range space of the K matrix is divided into signal
space Ss and noise space Sn. They are orthogonal and, respectively,
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spanned by the singular vector υj corresponding to nonzero singular
values and zero singular values, i.e., Ss = Span{υj , σj > 0}⊥Sn =
Span{υj , σj = 0}. By observing the relationship between the
background Green’s function vectors and the singular vectors, it comes
to the equation

υ∗jGi(rl) = υ∗jXi(rl) = 0, for σj = 0. (10)

where l = 1, 2, . . . , L, i = 1, 2, 3, and

G(r) =
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...
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,

and the subscript i denotes the ith column of G(r) and X(r), which
are both 3M × 3 matrices. Consequently, following the previous
reports [13–15], the TR-MUSIC pseudo-spectrum is defined as

Pem(r) = 1/
∑

σj=0


 ∑

i=1,2,3

∣∣υ∗jGi(r)
∣∣2 +

∑

i=1,2,3

∣∣υ∗jXi(r)
∣∣2


 (11)

In the above, the algorithm scans the imaging domain by r,
and the pseudo-spectrum becomes infinite at the target positions
rl, l = 1, 2, . . . , L. It is notable that, to locate all the targets, 3M must
be large than the six times of the number of the targets since one target
can be associated to at most six nonzero singular values [9, 12, 13],
so that the multistatic response matrix exists zero singular values to
perform the TR-MUSIC searching in theory. However, in practice, the
system requires more antenna elements to achieve good performance
due to the loss and noise, and so on.

2.3. Transmit-mode Analysis

The previous discussion is all based on the echo-mode transceiver
structure. In fact, many applications prefer the transmit-mode
transceiver, such as bore-hole tomography, distributed sensing and
imaging. In addition, extending the study to transmit-mode also
brings some extra improvements, which include bringing more accurate
location and higher resolution imaging because the noncoincident
arrays actually increase the effectual aperture of the array and making
the algorithm more flexible and practical. To analyze the transmit-
mode, we modify the previously discussed echo-mode model with
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adding a receiver array, which has N antenna elements located at
rr
n, n = 1, 2, . . . , N . Also each element consists of three dipole

antennas oriented in the x, y and z direction with length l′nx, l′ny,
l′nz, respectively.

Accordingly, in this case Eq. (4) is changed by replacing rt
m with

rr
n. It is followed by

E′sca =
[
G′,X′

]
· F ·Einc = Q′ · F ·Einc (12)

where G′ and X′ are 3N × 3L matrices obtained also by replacing rt
m

with rr
n. Then, similarly, one has the multistatic response matrix K′

as
K ′ = L′ ·Q′ · F · P ·M · L, (13)

where L′ = diag[l′1x, l′1y, l′1z, l′2x, l′2y, l′2z, . . . , l′Nz]. Here K ′ is a
3N × 3M matrix which represents a mapping from the transmitter to
receiver space and its Hermitian, K ′∗, represents a mapping from the
receiver to transmitter space. Consequently, the so called transmitter
and receiver time reversal matrices T t = K ′∗K ′ and T r = K ′K ′∗ have
the singular system as

T tuj = σ2
j uj ,

T rυj = σ2
j υj .

(14)

The transmitter and receiver spaces are spanned by uj and υj ,
respectively. They can be both subdivided into signal space and
noise space, which is spanned by the singular vectors corresponding
to nonzero singular values and zero singular values, respectively. The
relationship can be expressed as

St = St
s ⊕ St

n, Sr = Sr
s ⊕ Sr

n,

St
s = Span{uj , σj > 0}⊥St

n = Span{uj , σj = 0},
Sr

s = Span{υj , σj > 0}⊥Sr
n = Span{υj , σj = 0}

On the other hand, the background media Green’s function vectors
are the orthonormal bases of the signal space. Therefore, the inner
product of the background Green’s function vectors of the target
locations and singular vectors in noise space theoretically equals to
zero. One obtains

u∗jGi(rl) = u∗jXi(rl) = 0, for σj = 0;

υT
j G′

i(rl) = υT
j X′

i(rl) = 0, for σj = 0.
(15)

where i = 1, 2, 3; l = 1, 2, . . . , L; Gi(rl) and Xi(rl) are the same
as previously defined ones; G′

i(rl) and X′
i(rl) are given by first
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substituting rr
n for rt

m in Gi(rl) and Xi(rl), then exchanging the
positions of r and rr

n. Now, one defines the pseudo-spectrum Ptm(r)
of the transmit-mode TR-MUSIC algorithm to be

Ptm(r) = 1/
∑

σj=0

[ ∑

i=1,2,3

∣∣υ∗jGi(r)
∣∣2 +

∑

i=1,2,3

∣∣υ∗jXi(r)
∣∣2

+
∑

i=1,2,3

∣∣uT
j G′

i(r)
∣∣2 +

∑

i=1,2,3

∣∣uT
j X′

i(r)
∣∣2

]
(16)

2.4. Computation of Dyadic Green’s Function

The computation of the multilayered dyadic Green’s function employed
here follows the way described in [22]. Considering the highlighted
application to subsurface detection, one observes it in a model setup
with two layered planar media that denotes the upper half-space and
lower half-space. In this case, for an observation point r at one half-
space away from the source point r′ at the opposite half-space, the
dyadic Green’s function is given by

G(r, r′)=
i

8π2

+∞∫∫

−∞

dks

k+,zk2
s

[
M

(
ks, r, r′

)
+N

(
ks, r, r′

)]−ẑẑ

k2
+

δ
(
r, r′

)
(17)

where

M(ks, r, r′) = (∇× ẑ)(∇′ × ẑ)eiks·(rs−r′s)FTE(z, z′),

N(ks, r, r′) =
(∇×∇× ẑ

iωε−

)(∇′ ×∇′ × ẑ

−iωµ+

)
eiks·(rs−r′s)FTM(z, z′),

FTE,TM(z, z′) = e−ik−,z(z+d1)TTE,TMe−ik+,z(d1−z′),

TTE =
2µ−k+,z

µ−k+,z + µ+k−,z
,

TTM =
2ε−k+,z

ε−k+,z + ε+k−,z
,

here, the subscripts + and − label the parameters of the half-spaces
where the source point and observation point locate, respectively;
ks = x̂kx + ŷky; rs = x̂x + ŷy; d1 is z axis of the interface between
the two half-spaces. It is notable that the Green’s function satisfies

the reciprocity G(r, r′)µ(r′) = G
T
(r′, r)µ(r), which can reduce the

computation cost. However, since the emphasis is on the TR-MUSIC
and its application, we would not attempt to use any fast-algorithm to
compute the Green’s function.
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3. PERFORMANCE INVESTIGATION

In this section, we carry out two numerical examples to verify the
feasibility and the improved imaging resolution of the proposed TR-
MUSIC algorithm in the applications of underground detection. They
are carried out in this way: First, the K matrix is obtained by
using Eq. (7); then the obtained K matrix is contaminated with the
additive white Gaussian noise; At last, the echo-mode and transmit-
mode algorithms based on Eqs. (11) and (16) are used to locate
the targets and image the concerned domain. We first describe the
detection system model as shown in Fig. 1. The dash rectangle is
the plane z = d1 = −4 which denotes the interface between the air
and subsurface. The transmitter array and the receiver array locate
at the plane z = 0, which are both set to be planar array. When
the detection and imaging system works in the echo-mode, the array
is monostatic. Comparatively, the elements of the array are divided
into two group in transmit-mode, which work independently to realize
the bistatic mechanism. The spheral targets are buried underground
and located in a limited three dimensional imaging domain. In
this representation, the targets are assumed to be relatively small
comparing with the operating wavelength as discussed in the previous
theoretical derivation. However, an approximate approach for the
extended targets detection is to discrete the targets into a set of small
spheres and then perform the TR-MUSIC algorithm.

3.1. 3D Evaluation

In this subsection, one performs the three dimensional detection of
underground targets based on the numerical experiment. The system
is described as follows. The 16 transmitter elements and 16 receiver
elements of the arrays are all arranged in the xoy (z = 0) plane. The

Figure 1. The configuration of the concerned detection model.
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transmitter array is placed in a cross shape with an element distance
of 5λ. Meanwhile, the receiver array is arranged in the same way
except that it is moved 40λ away form the transmitter array in x
direction. In the echo-mode simulations, only the transmitter array
works in a monostatic way. And in the transmit-mode ones, both the
transmitter and receiver arrays work. The available imaging domain
is a 3D box with a size of 6λ × 6λ × 6λ as shown in Fig. 1. The
spherical scatterer is placed at the center of the imaging box and have
a radius of a1 = λ/15 and a distance of 10λ from the center of the
transmitter array. The underground electromagnetic parameters are
ε0(r) = 2ε0, µ0(r) = 1.5µ0 and the electromagnetic parameters of the
scatterer are ε(r1) = 3.5ε0, µ(r1) = 2.5µ0. The frequency of the system
is chosen at 100 MHz. To evaluate the performance in a more practical
way, we consider that the transfer matrix K is contaminated with the
additive white Gaussian noise. The noise level is also controlled by
the signal-noise-ratio which is defined in [18] as 20 log10(‖K‖/‖k‖),
where ‖k‖ is the additive white Gaussian noise. Figs. 2 and 3 show
the three dimensional imaging results of the buried target for echo-
mode and transmit-mode TR MUSIC algorithms, respectively. The

(a) SNR = -10 dB (b) SNR = 10 dB

(c) SNR = 30 dB (d) SNR = 50 dB

Figure 2. The 3D imaging results of the echo-mode TR MUSIC
algorithm (Pem) with operation frequency f = 100 MHz and different
signal-noise-ratios: (a) SNR = −10 dB, (b) SNR = 10 dB, (c)
SNR = 30 dB, (d) SNR = 50 dB. The target is located at (0, 0, −10λ).
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(a) SNR = -10 dB (b) SNR = 10 dB

(c) SNR = 30 dB (d) SNR = 50 dB

Figure 3. The 3D imaging results of the transmit-mode TR
MUSIC algorithm (Ptm) with operation frequency f = 100 MHz and
different signal-noise-ratios: (a) SNR = −10 dB, (b) SNR = 10dB, (c)
SNR = 30 dB, (d) SNR = 50 dB. The target is located at (0, 0, −10λ).

signal-noise-ratio is chosen to be −10 dB, 10 dB, 30 dB and 50 dB. It
is obviously presented that both the echo-mode and transmit-mode
can well and truly locate the target even when the signal-noise-ratio
is very low. However, the latter provides better resolution and shaper
imaging as shown in Fig. 3. And it also can be observed that the
transmit-mode is much more robust against the increase of the noise
than the echo-mode. These advantages appear due to the increased
array aperture of the transmit-mode method. In addition, one can tell
from the configuration of the transmit-mode that more flexible and
practical systems can be achieved for many potential application, such
as underwater detection and imaging, distributed surveillance and so
on.

3.2. Performance Comparison

In this second numerical investigation, one compares the 3D imaging
of these primary time reversal imaging methods (echo-mode and
transmit-mode DORT) with the proposed methods (echo-mode and
transmit-mode TR MUSIC). The setup of the simulation model is the
same as the model in the last subsection except that the receiver array
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(a) Echo-mode DORT (b) Transmit-mode DORT

(c) Echo-mode DORT (d) Transmit-mode TR MUSIC

Figure 4. The 3D imaging results of one target, located at (0, 0,
−10λ), by using the four method: (a) Echo-mode DORT, (b) Transmit-
mode DORT, (c) Echo-mode TR MUSIC (Pem), (d) Transmit-mode
TR MUSIC (Ptm). The operation frequency is f = 100 MHz and the
signal-noise-ratios is set to be SNR = 20 dB.

Figure 5. The normalized amplitude of the pseudospectrum in the
cross range of the imaging results for four algorithms: The echo-
mode DORT, the transmit-mode DORT, the echo-mode TR MUSIC
(Pem) and the transmit-mode TR MUSIC (Ptm) when SNR = 20 dB,
f = 100 MHz.
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is changed to be placed at the z = −20λ plane. The centers of the
transmitter array, the imaging box and the receiver array are colinear:
(0, 0, 0), (0, 0, −10λ) and (0, 0, −20λ). This alteration can further
improve the imaging resolution especially for the scenarios with far
field detection.

When the operation frequency is set to be 100 MHz, and the signal-
noise-ratio is 20 dB, the 3D imaging results of one scatterer located at
the center (0, 0, −10λ) of the imaging box, using these four time
reversal imaging methods, are obtained as shown in Fig. 4. It could
be seen that the proposed TR MUSIC algorithms, both echo-mode
and transmit-mode, have shaper imaging result that the conventional
DORT algorithm. Agreeing with the expectance, the transmit-mode
methods are of the better performance than the echo-mode methods
since they actually have the increased effective array aperture. If one
draw the normalized amplitude of the pseudospectrums on a one-
dimensional cross range (y = 0, z = −10λ), one can observe the
above conclusions more clearly as depicted in Fig. 5. The distance
between the two dash upright lines denotes the diameter of the

(a) Echo-mode DORT (b) Transmit-mode DORT

(c) Echo-mode DORT (d) Transmit-mode TR MUSIC

Figure 6. The 3D imaging results of two targets, located at
(1.67λ,−1.67λ,−8.33λ) and (−1.67λ, 1.67λ,−11.67λ), by using the
four method: (a) Echo-mode DORT, (b) Transmit-mode DORT, (c)
Echo-mode TR MUSIC (Pem), (d) Transmit-mode TR MUSIC (Ptm).
The operation frequency is f = 100 MHz and the signal-noise-ratios is
set to be SNR = 20 dB.
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target. Obviously from the blue curve, the transmit-mode TR MUSIC
algorithm is proved having closest pseudospectrum distribution to the
actual target and having restrained sidelobe of the pseudospectrum.

Figure 6 presents the example of detecting two scatterers by using
these four time reversal imaging methods. It could be seen that the
DORT method would be difficult to distinguish multiple targets when
the distance among the targets is relatively small. Comparatively,
the TR MUSIC methods can combat this obstacle more effectively
because of the improved resolution. This is a valuable improvement in
the concerned underground detection, because when one comes with
extended targets, this enhancement is beneficial to profiling the targets.

The examples are investigated in rather an academic situation in
this paper, however it verifies that the proposed TR MUSIC method
combined with the half-space Green’s function is a very promising
detection algorithm comparing with the former DORT method, mainly
due to the improvement on the imaging resolution.

4. CONCLUSION

In this paper, we investigate the time reversal MUSIC algorithm for
detection and imaging of the subsurface targets, by introducing the
half-space dyadic Green’s function. The theoretical derivation of the
time reversal matrix is first discussed in detail when the assumption
that the BORN approximation is valid for the model is made. Then,
according to the antenna array configurations, the echo-mode and
transmit-mode pseudospectrums are defined. This provides more
options for the practical applications in different situations, such as
subsurface detection, underwater surveillance and medical imaging
etc. The numerical examples verify the feasibility and flexibility of
the proposed method. Furthermore, the comparison between the
conventional DORT methods and the proposed methods is performed,
which proves that the TR MUSIC methods have better robustness and
give higher resolution of the imaging. Therefore, one concludes that
the proposed method is an effective solution of subsurface detection
and a promising candidate of high quality imaging.
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