Vol. 97
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-19
A Numerical Method for Electromagnetic Scattering from Dielectric Rough Surfaces Based on the Stochastic Second Degree Method
By
Progress In Electromagnetics Research, Vol. 97, 327-342, 2009
Abstract
In this paper, we propose an iterative numerical approach based on the stochastic second degree (SSD) algorithm in combination with a new splitting of the impedance matrix to analyze electromagnetic scattering from 1-D dielectric rough surfaces. The embedded matrix-vector product is computed using the banded matrix iterative approach/canonical grid (BMIA/CAG) and the spectral acceleration (SA) technique. For Gaussian surface with Gaussian spectrum, through extensive numerical simulation, it is observed that for HH polarization, the proposed method is slightly less computationally efficient in terms of run time and number of iterations than its counterpart without the SSD algorithm. However, the proposed method obviously improves the convergence properties over its counterpart by changing cases from divergent to convergent when the rms height and rms slope are large. For VV polarization, the relative performance in terms of number of iterations of the proposed method shows appreciable improvement and becomes better starting from the rms slope of 0.55 uniformly across all rms heights. As far as the convergence properties are considered, the proposed method obviously improves over its counterpart for certain large rms slopes. In short, the proposed method demonstrates its superiority when dealing with truly rough surfaces.
Citation
Yang Du, and Bin Liu, "A Numerical Method for Electromagnetic Scattering from Dielectric Rough Surfaces Based on the Stochastic Second Degree Method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
doi:10.2528/PIER09092501
References

1. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985.

2. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media ," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

3. Zhou, L., L. Tsang, V. Jandhyala, and C.-T. Chen, "Studies on accuracy of numerical simulations of emission from rough ocean-like surfaces," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, 1757-1763, 2001.
doi:10.1109/36.942554

4. Li, Z.-X., "Bistatic scattering from rough dielectric soil surface with a conducting object with arbitrary closed contour partially buried by using the FBM/SAA method ," Progress In Electromagnetics Research, Vol. 76, 253-274, 2007.
doi:10.2528/PIER07071501

5. Wang, M.-J., Z.-S. Wu, and Y.-L. Li, "Investigation on the scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchho® approximation," Progress In Electromagnetics Research B, Vol. 4, 223-235, 2008.
doi:10.2528/PIERB08010903

6. Wang, R. and L. Guo, "Numerical simulations wave scattering from two-layered rough interface," Progress In Electromagnetics Research B, Vol. 10, 163-175, 2008.
doi:10.2528/PIERB08082903

7. Pak, K., L. Tsang, C. H. Chan, and J. T. Johnson, "Backscattering enhancement of vector electromagnetic waves from two-dimensional random rough surfaces based on Monte Carlo simulations," J. Opt. Soc. Amer. A, Opt. Image Sci., Vol. 12, 2491-2499, 1995.
doi:10.1364/JOSAA.12.002491

8. Du, Y., Y. L. Luo, and J. A. Kong, "Electromagnetic scattering from randomly rough surfaces using the stochastic second-degree method and the sparse matrix/canonical grid algorithm," IEEE Trans. Geoscience and Remote Sensing, Vol. 46, 2831-2839, 2008.
doi:10.1109/TGRS.2008.921211

9. Du, Y., J. C. Shi, Z. Y. Li, and J. A. Kong, "Analysing EM scattering from randomly rough surfaces using stochastic second-degree iterative method, sparse matrix algorithm and Chebyshev approximation," Electronics Letters, Vol. 45, 292-293, 2009.
doi:10.1049/el.2009.2543

10. Li, Q., C. H. Chan, and L. Tsang, "Monte-Carlo simulations ofwave scattering from lossy dielectric random rough surfaces using the physics-based two-grid method and canonical grid method," IEEE Trans. Antennas Propagat., Vol. 47, 752-763, 1999.
doi:10.1109/8.774140

11. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations, Vol. 2, Wiley-Interscience, New Jersey, 2001.

12. Tsang, L., C. H. Chan, K. Pak, and H. Sangani, "MonteCarlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method," IEEE Trans. Antennas Propagat., Vol. 43, 851-859, 1995.
doi:10.1109/8.402205

13. Chen, K.-S., L. Tsang, and J.-C. Shi, "Microwave emission from two-dimensional inhomogeneous dielectric rough surfaces based on physics-based two-grid method," Progress In Electromagnetics Research, Vol. 67, 181-203, 2007.
doi:10.2528/PIER06082903

14. Holliday, D., L. L. DeRaad, and G. C. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. Antennas Propagat., Vol. 44, 722-729, 1996.
doi:10.1109/8.496263

15. Iodice, A., "Forward-backward method for scattering from dielectric rough surfaces," IEEE Trans. Antennas Propagat., Vol. 50, 901-911, 2002.
doi:10.1109/TAP.2002.800700

16. West, J. and J. M. Sturm, "On iterative approaches for electromagnetic rough-surface scattering problems," IEEE Trans. Antennas Propagat., Vol. 47, 1281-1288, 1999.
doi:10.1109/8.791944

17. Liu, B., Z. Y. Li, and Y. Du, "A fast numerical method for electromagnetic scattering from dielectric rough surfaces,", submitted for publication.

18. Chou, H.-T. and J. T. Johnson, "Formulation of forward-backward method using novel spectral acceleration for the modeling of scattering from impedance rough surfaces," IEEE Trans. Geosci. Remot. Sens., Vol. 38, 605-607, 2000.
doi:10.1109/36.823954

19. Chou, H.-T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method," Radio Sci., Vol. 33, 1277-1287, 1998.
doi:10.1029/98RS01888

20., De Pillis and J., "Faster convergence for iterative solutions to systems via three-part splittings," SIAM J. Numer. Anal., Vol. 15, 888-911, 1978.
doi:10.1137/0715058