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Abstract—In this paper, we propose an iterative numerical
approach based on the stochastic second degree (SSD) algorithm in
combination with a new splitting of the impedance matrix to analyze
electromagnetic scattering from 1-D dielectric rough surfaces. The
embedded matrix-vector product is computed using the banded matrix
iterative approach/canonical grid (BMIA/CAG) and the spectral
acceleration (SA) technique. For Gaussian surface with Gaussian
spectrum, through extensive numerical simulation, it is observed that
for HH polarization, the proposed method requires roughly one half
number of iterations as needed by the forward-backward method with
spectral acceleration (FBM-SA). When the rms height is small, the
proposed method takes more run time; when the rms slope is no
less than 0.33 and rms height is no less than 1.0λ, where λ is the
wavelength, the proposed method is more efficient. More importantly,
it obviously improves the convergence properties over FBM-SA by
changing cases from divergent to convergent when rms height is
no less than 2.0λ and rms slope is no less than 0.55 except for
one extreme case. For VV polarization, the proposed method is
less computationally efficient in terms of run time and number of
iterations than FBM-SA. However, as far as convergence properties are
considered, similar to HH polarization, the proposed method improves
over FBM-SA when the rms height and rms slope are large. Hence for
both polarizations, the proposed method demonstrates its suitability
when dealing with truly rough surfaces.
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1. INTRODUCTION

Electromagnetic scattering from randomly rough surfaces is an
important research topic in remote sensing (e.g., [1–6]). Several fast
numerical techniques have been proposed in the literature for both one-
dimensional and two-dimensional rough surfaces. For two dimensional
surfaces, one popular method is the sparse matrix/canonical grid
(SMCG) iterative method [7]. This approach is computationally
efficient for matrix-vector product, either involving sparse matrix or
through the fast Fourier transform (FFT). For PEC surfaces, another
efficient method was recently proposed by the authors which was based
on the stochastic second degree (SSD) method [8] to solve the optimal
structural parameter s which minimizes the expected spectral radius,
in combination with the efficient approach for computing the matrix-
vector product as embedded in the SMCG method. Since for PEC
surfaces, the impedance matrix generated from the magnetic field
integral equation (MFIE) is diagonally dominated by values around
1/2, a new matrix-splitting scheme was also used to facilitate the
solution of the inner iteration and in the meanwhile to maintain a
reasonably good convergence rate. Desirable stability is observed in
terms of run time increase due to increase of the number of surface
unknowns. The above methods are efficient for analyzing scattering
from surfaces with small to moderate roughness.

For large roughness, we proposed a new algorithm [9] , which
combines the SSD iterative method with the sparse matrix (SM)
algorithm to achieve high computational efficiency, and further uses
the Chebyshev approximation to replace the Taylor expansion for the
weak interaction between two points beyond mutual neighborhoods.
Numerical example demonstrates the suitability of the proposed
method for rough surfaces with rms height larger than 3 wavelengths.

However, when the rough surfaces under consideration are
dielectric, things become more complicated. Two Greens functions are
required for the two media problem. And a much denser discretization
of the surface for the dielectric medium may be required because the
wavenumber can be much larger than that of the free-space. In turn
the CPU and memory requirement is much more demanding. To
reduce CPU time, in [10] a physics-based two-grid method (PBTG)
was proposed, where two kinds of grids are used, namely, a dense grid
and a sparse grid. The sparse grid is the usual sampling grid of free
space, while the dense grid depends on the wavenumber of the dielectric
medium.

Since fields in the two media need to be analyzed simultaneously,
the impedance matrix generated from the field integral equation
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becomes more complex by containing information of both media.
Moreover, it loses the special form attained by its PEC counterpart
where the diagonal elements are dominated by values around 1/2.

Nevertheless, an appropriate splitting of the impedance matrix
is of critical importance in constructing an iterative solution to
the linear system. Not only the choice of splitting determines the
asymptotic convergence rate of the iterative system, but it determines
if the iterative system converges or diverges. There are different
splitting schemes proposed within the SMCG technique [11]. For
1D rough surfaces, the most popular methods, such as the banded
matrix iterative approach/canonical grid (BMIA/CAG) [12] for PEC
rough surface, the physics-based two-grid method (PBTG) [10, 13] for
dielectric rough surface, and the iterative forward-backward method
(FBM) for both PEC [14] and dielectric rough surfaces [15], represent
different choice of the splitting [16].

In analyzing EM scattering from 1-D dielectric rough surfaces,
recently we proposed an efficient and accurate iterative numerical
approach [17]. It is based on a new splitting of the impedance
matrix Z to improve the asymptotic convergence rate of the resultant
iterative system. The structure of split matrix is then fully explored,
in combination with the application of an identity for inverse of block
matrix, to further reduce the computational and storage complexity.
The embedded matrix-vector product is computed using the spectral
acceleration technique. For Gaussian surface with Gaussian spectrum,
it converges faster than both forward-backward method (FBM) and
FBM with spectral acceleration (FBM-SA) [18].

Before attacking the more complicated three-dimensional scatter-
ing from 2D dielectric rough surfaces, in the current work we choose
to build on our previous study on scattering from 1D dielectric rough
surfaces, where the SSD iterative algorithm is applied.

The remainder of this paper is organized as follows. In Section 2,
we describe our numerical approach, which is based on the SSD in
combination with a new matrix splitting method and of SA. Numerical
analysis of the computational efficiency and convergence properties of
the proposed method is presented in Section 3. Section 4 concludes
this paper.

2. FORMULATION

Consider a tapered plane wave ψinc(x, z) incident upon a one-
dimensional (1D) dielectric rough surface. The random height profile
is z = f(x). The upper medium has relative dielectric constant ε and
permeability µ. The lower medium has relative dielectric constant ε1
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and permeability µ1. The fields ψ in the upper medium and ψ1 in the
lower medium satisfy the following surface integral equations [11]

1
2
ψ

(
r̄′

)−−
∫

s

[
ψ (r̄)

∂G (r̄, r̄′)
∂n

−G
(
r̄, r̄′

) ∂ψ(r̄)
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]
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]
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where the point r̄ = x̂x + ẑf(x) is on the surface with unit surface
norm n̂ pointing upward; G is the 2D Green’s function in the upper
medium and G1 in the lower medium; −

∫
denotes the Cauchy principle

value integral.
The boundary conditions are ψ(r̄) = ψ1(r̄) and ∂ψ1(r̄)/∂n =

µ1/µ∂ψ(r̄)/∂n for TE case, and are ψ(r̄) = ψ1(r̄) and ∂ψ1(r̄)/∂n =
ε1/ε∂ψ(r̄)/∂n for TM case. The second condition can be put in a more
compact form as ∂ψ1(r̄)/∂n = ρ∂ψ(r̄)/∂n where ρ = µ1/µ or ε1/ε for
TE or TM case, respectively.

After discretization, (1) and (2) become
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where rmn =
√

(xn − xm)2 + [f(xn)− f(xm)]2, γm =
√

1 + [f ′(xm)]2,
∆x is the x-distance of two consecutive points on the surface. H

(1)
n (·)
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denotes the Hankel function of the first kind. k and k1 are the free-
space propagation constants of the upper and lower media, respectively.

The discretized system can be expressed more compactly in matrix
and vector form as

Zx = b (9)

where Z =

(
Za Zb

Zc Zd

)
, x =

(
U
ψ

)
, and b =

(
ψinc
0

)
.

2.1. The Proposed Method

2.1.1. A New Splitting of the Impedance Matrix

In [17], Z is split into a easy-to-invert matrix M and the remainder N ,
that is, Z = M −N . A corresponding iterative sequence is formed as

Mxk+1 = Nxk + b (10)

where k = 0, 1, 2, . . . , or equivalently put it as

xk+1 = Bxk + b̃ (11)

where B = M
−1

N and b̃ = M
−1

b. The form of M that we use in this
study is

M =




Z
s

a + Z
FS

a

1/2 0 · · · 0

0 1/2
. . .

...
...

. . . . . . 0
0 · · · 0 1/2

Z
s

c

1/2 0 · · · 0

0 1/2
. . .

...
...

. . . . . . 0
0 · · · 0 1/2




(12)

Determination of this form for M is based on the observation that the
impedance matrix Z is characteristically composed of four subblocks
(see (9)), with each representing different types of interactions among
points on the surface. The subblocks Zb and Zd are special in
that they are diagonally dominated by the value of one half. This
observation motivates us to follow the way of matrix splitting in [8, 9].
The way of splitting the subblock Za is similar to the BMIA/CAG
approach, where a three-part partition is carried out, and the strong
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Figure 1. Spectrum of the iteration matrix B.

part Z
s

a and canonical grid weak part Z
FS

a are kept in M . Similar
treatment is applied to the subblock Zc. Yet for this subblock some
simplification can be performed, specifically, the weak part is ignored,
since it is related to the Green’s function in the lower region which can
demonstrate moderate to large attenuation [11]. This form of matrix
splitting has the desirable property of keeping the computational
complexity manageable.

For such sequence to converge for an arbitrary initial x0, it must
hold that ρ(B) < 1, where ρ(B) is the spectral radius of B. We now
examine the convergence property of the proposed iterative system.
Fig. 1 provides one illustration of the spectrum of iteration matrix B
for HH polarization, where a 1D dielectric rough surface is considered,
which follows a Gaussian process with Gaussian spectrum. The rms
height is σ = 1.5λ, and the correlation length is lc = 3λ, with λ
being the wavelength. The relative dielectric constant is εr = 15 + 4i.
The total number of unknowns is 3000. The spectral radius is 0.72,
corresponding to an asymptotic convergence rate of 0.14. This rate
is appealing considering the fact that in this case the surface is very
rough. Further numerical experiments also show satisfactory results.

2.1.2. SSD Formulation

Corresponding to the first order iterative system (10), the SSD iterative
sequence is

Mxk+2 =−µZ

(
1

s+1
xk+1+

s

s+1
xk

)
+M ((1− s) xk+1+sxk)+µb (13)

where s is a structural parameter to be optimized; µ is a controlling

parameter for the Jacobi-Richardson shift B̃ = µB + (1− µ) I; B is
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the iteration matrix of the first-degree system; I is the N ×N identity
matrix. Here µ takes the value of one half. The optimal s0 is found to
be the solution to the following equation [8]

∫ s

s
∂fN (w)

∂s
dw +

∫

s

(
fN (w) + w

∂fN (w)
∂s

)
dw = 0. (14)

where fN (w) is the probability density of the largest order statistic

wN
∆= max

λk∈σ
(
B

)(gk (s) :=
|λk − s|
1− s

), and σ
(
B

)
is the spectrum of B.

In (13), the product of the impedance matrix Z with a vector can
be computed using a highly efficient algorithm as embedded in SA.
The inner iteration of (13) can be symbolically put as

Mxk+2 = ν + Mu. (15)

The system Mx̃k+2 = ν is solved per our fast algorithm [17], which
makes use of our matrix-splitting scheme

M =

(
M11 M12

M21 M22

)
, v =

(
v1

v2

)
, (16)

where the property that both M12 and M21 are both diagonal matrices
are to be fully exploited,

M12 = 1/2I, M21 = 1/2I. (17)

The fast algorithm is formulated as follows:

1) Let d = v2 − v1.

2) Calculate D = M11 −M21.

3) Solve Dw = d

4) Form [
−w

2v2 + 2M21w
], which is the solution x̃k+2.

In this algorithm, the original system Mx̃k+2 = ν is replaced by
the new system Dw = d, resulting in a dimension reduction from N to
N/2.

Now it follows that the inner solution to (15) is

xk+2 = x̃k+2 + u (18)
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2.1.3. Spectral Acceleration

In evaluating the product of the impedance matrix Z with a vector,
the spectral acceleration algorithm is one of several efficient approaches
and is adopted in this study. The basic concepts of the SA algorithm
are given as follows. Interested readers may refer to [19] for more
details.

Let Ef,(i), Eb,(i), i = (1, 2) denote the forward and backward
radiation by the source current elements, where the superscript i refers
to the medium above the surface (i = 1) or below (i = 2). Ef,(1)(xn)
has two components, namely, the strong and weak parts, as follows

Ef,(1)(xn) = Efs,(1)(xn) + Efw,(1)(xn) =
n−1∑

m=n−Ns

(
Z(a)

mnUm+Z(b)
mnψm

)

+
n−Ns−1∑

m=1

(
Z(a)

mnUm + Z(b)
mnψm

)
(19)

The strong term Efs,(1)(xn) is calculated by direct matrix-vector
product using exact matrix elements. The weak contribution
Efw,(1)(xn) is obtained by employing the spectral representation of
the Green’s function [19], and it is expressed as

Efw,(1)(xn) =
n−Ns−1∑

m=1

(
Z(a)

mnUm + Z(b)
mnψm

)

=
i∆x

4π

∫

Cθ

Fn(θ)eikzn sin θdθ, (20)

where Fn(θ) can be calculated from weak element currents through a
recursive procedure

Fn(θ) = Fn−1(θ)eik∆x cos θ

+ [−ik(− sin θ + fxm cos θ)Un−Ns−1

+ψn−Ns−1]× eik(Ns+1)∆x cos θe−ikzn−Ns−1 sin θ (21)

The other quantities, Ef,(2) and Eb,(i), i = (1, 2), can be treated
similarly.

2.2. Complexity Analysis

For outer iteration of (13), to update the right side a matrix-vector
product Zyk+1 needs to be computed, where yk+1 = 1

s+1xk+1 + s
s+1xk.

This product can be efficiently computed using SA. Therefore,
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updating the right side (exclusive of the term M ((1− s) xk+1 + sxk)
for it is separately added as shown in (15)) in the outer iteration
requires O(N)+O(bw×N) operations, where the latter term is related
to the strong part needed in SA. The inner iteration is solved by means
of the Krylov-subspace based algorithm GMRES for reasons as stated
in [8]. Since in the proposed approach the dimensionality of the inner
iteration is reduced by one half as indicated in the formation of the
matrix D in step 3) of the above algorithm, while bandedness plus
Toeplitz structure is preserved in D, appreciable computational gain
has been achieved compared to BMIA/CAG.

As far as memory efficiency is concerned, comparing to
BMIA/CAG, our approach can reduce the storage requirement by more
than one half. This is because while BMIA/CAG needs to maintain
bandedness for all the four subblocks M11 ∼ M22, where the storage
for M11 and M12 can be appreciable when the number of unknowns
N is large (the neighborhood distance is usually chosen as N/10),
in our approach the subblocks M12 and M22 are each replaced by
a diagonal matrix, hence effectively reduces the storage by one half.
Moreover, reduction of the dimensionality of the inner iteration by one
half along with the preservation of the banded plus Toeplitz structure
of the matrix entails that the storage as required in constructing the
Krylov subspace in GMRES is further reduced.

3. NUMERICAL ILLUSTRATIONS

In this section, we evaluate the accuracy and convergence behavior
of the proposed method. We also make a comparison with FBM-SA.
For notational convenience, in the following we shall call the method
proposed in this paper as SSD-NS-SA, standing for the combination of
SSD, new matrix splitting, and spectral acceleration. All results are
run on a Core 2 with double CPU of 3.0 GHz and memory of 4.0 GB.

In the numerical illustrations, the outer iteration is carried out
until the error norm criterion∥∥∥Zxk − b

∥∥∥
∥∥b

∥∥ < 10−4 (22)

is satisfied. The normalized bistatic scattering coefficient (NBSC) is
defined as [11]

σ(θs) =

∣∣∣ψ(N)
S (θs)

∣∣∣
2

8πkg
√

π
2 cos θi

[
1− 1+2 tan2 θi

2k2g2 cos2 θi

] (23)
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where g is the tapering parameter; θi is the incidence angle; θs is the
scattering angle, and

ψ
(N)
S (θs) = −

∫ ∞

−∞
dx

{
−U(x) + ψ(x)ik

[
df

dx
sin θs − cos θs

]}

·e−ik(sin θsx+f(x) cos θs) (24)

We shall consider Gaussian surface profiles with Gaussian
spectrum. The spectrum is

W (k) =
h2lc√

4π
exp

(
−k2lc2

4

)
(25)

where h is the rms height, and lc is the correlation length.
The Green’s function in the lower region can have moderate to

large attenuation [11]. A medium with a large real part of dielectric
constant is normally associated with a large imaginary part. Let rmn be
the distance between the mth and the nth parts. When rmn is greater
than a certain value, say rl, the field interaction between the mth and
the nth point is vanishingly small. In the numerical simulations, rl
is fixed at 5λ. The Green’s function for the lower medium is set to
zero when the distance rmn is larger than rl. This simplification is
unnecessary yet can help save some computation. When it is used, Zc

and Zd each becomes a banded matrix.
We start by confirming the accuracy of the proposed method,

where we compare the NBSCs obtained by direct matrix inversion
(DMI) with that obtained by our method. The surface is a Gaussian
surface with Gaussian correlation function, with rms height σ = 1.0λ,
correlation length lc = 2.0λ, and relative dielectric constant εr =
15+4i. The incidence angle is 60◦. The tapering parameter is g = L/4,
where L is the surface length and is set to L = 64λ. The surface is
sampled at 32 points per wavelength, so the total surface unknowns
are 4096. The results are averaged over 100 realizations and are shown
in Fig. 2. We see that for both HH and VV polarizations, the NBSCs
obtained by the proposed method completely overlap with their DMI
counterparts.

We then compare run time and number of iterations between SSD-
NS-SA and FBM-SA for rough surfaces with different rms heights and
slopes. The relative dielectric constant, incidence angle are kept the
same as before. The number of unknowns is 16384. The rms heights
ranges from 0.3λ to 3.0λ, and the ratio of rms height to correlation
length ranges from 0.15 to 1.0, corresponding to rms slope from 12◦
to 55◦. All of numerical experiment are averaged over five realizations.
If any of the five realizations fails to converge for a specific case, it is
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Figure 2. Comparison between the proposed method SSD-NS-SA
and DMI of the HH and VV NBSCs from a Gaussian correlated rough
surface with σ = 1.0λ and lc = 2.0λ

marked with a ‘nc’ symbol to indicate ‘not convergent’. The results for
HH polarization are listed in Table 1 for FBM-SA and in Table 2 for
SSD-NS-SA using a pair of values, with the one outside the parenthesis
denoting run time while the one inside the parenthesis the number
of iterations. We observe that SSD-NS-SA reduces the number of
iteration by almost one half as required by FBM-SA, which speaks of
the effectiveness of the proposed matrix splitting and SSD formalism.
However, the efficiency gain in terms of number of iteration is not
directly translated to gain in run time. It is seen that when the rms
slope is 0.33 and rms height is no less than 1.0λ that run time of
SSD-NS-SA is less than that of FBM-SA. When the rms height is
small, SSD-NS-SA takes more run time. The disproportion between
iteration efficiency and run time efficiency of the proposed method
stems from the fact that in the current study, to solve Dw = d in the
inner iteration, time-consuming GMRES approach is used.

On the other hand, the improvement of SSD-NS-SA on
convergence properties over FBM-SA is impressive when comparing
Tables 1 and 2. FBM-SA fails to converge for cases when the rms
height is no less than 2.0λ and rms slope no less than 0.55. The
divergence behavior becomes more severe: At higher rms slope,
FBM-SA tends to diverge at smaller rms height. SSD-NS-SA
converges for all these cases except for one extreme case. This
convergence improvement stems from the Jacobi-Richardson shift,
which is currently used in the SSD formalism so as to ensure that
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Table 1. FBM-SA. Average run time and number of iterations for
different values of rms height and slope. Incidence angle: 60◦. Relative
dielectric constant: εr = 15 + 4i. Total number of unknowns is 16384.
HH polarization.

σ/lc σ=0.3 σ=0.5 σ=1.0 σ=2.0 σ=3.0
0.15 372(21) 401(21) 456(21) 528(21) 588(21)
0.33 378(21) 412(21) 660(20) 840(20) 960(20)
0.55 403(18) 507(19) 672(19) nc nc
0.707 367(20) 405(20) 704(20) nc nc

1 516(28) 600(22) nc nc nc

Table 2. SSD-NS-SA. Average run time and number of iterations for
different values of rms height and slope. Incidence angle: 60◦. Relative
dielectric constant: εr = 15 + 4i. Total number of unknowns is 16384.
HH polarization.

σ/lc σ=0.3 σ=0.5 σ=1.0 σ=2.0 σ=3.0
0.15 402(10) 494(10) 473(10) 550(12) 640(13)
0.33 470(10) 517(10) 568(10) 653(12) 743(14)
0.55 547(10) 659(10) 673(10) 846(12) 976(14)
0.707 734(10) 859(10) 850(10) 1043(12) 1235(14)

1 1330(11) 1329(10) 1356(11) 1617(13) nc

the spectrum of the first degree iterative system is located within
the circle centered at 1/2 with radius 1/2, a location required by
the deterministic second degree system [20]. This shift can bring
eigenvalues outside the unit circle on the left plane of the complex
spectrum into the unit circle when certain conditions are satisfied by
the eigenvalues.

However, there is a cost to pay for adopting the Jacobi-Richardson
shift: The reduction of computational efficiency in general, with
the realization and severity of the reduction dependent on shape of
spectrum of the iteration matrix. This is because, application of the
Jacobi-Richardson shift dictates a compression of the spectrum by one
half, then a shift to the center 1/2. When convergence rate of the
first degree system (10) is good, i.e., when the spectral radius is much
smaller than one, shifting to the center 1/2 may lead to appreciable
increase in spectral radius, an increase that cannot be compensated
by applying the SSD optimization procedure, hence slows down the
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Table 3. Spectral radius of the iteration matrix B.

N σ = 0.3λ σ = 0.5λ σ = 1.0λ σ = 2.0λ σ = 3.0λ

1500 0.427 0.373 0.301 0.207 0.149
3000 0.507 0.459 0.428 0.323 0.288

convergence rate. This analysis becomes more relevant when VV
polarization is considered. To make this point clear, we return to
study of the spectrum of iteration matrix where Fig. 1 is generated and
carry out further numerical experiments with increasing roughness.
For HH polarization, the spectral radius of B increases gracefully
with increasing rms height. On the contrary, for VV polarization
it is surprising to find that the trend is just the opposite. Such
behavior is demonstrated in Table 3, where the rms slope is 25◦.
Moreover, we find that the spectral radius for VV polarization is
sensitive to the number of unknowns and to the rms slope. That is, the
rougher the surface, the smaller the spectral radius, hence the more
severe impact of the Jacobi-Richardson shift. Of course when rms
slope and/or rms height goes beyond certain threshold, the trend of
decreasing spectral radius must reverse, otherwise the spectral radius
either goes to zero, which is impossible because then the iteration
matrix simply vanishes, or converges to some nonzero value, which
is equally impossible because one can hardly find any fundamental
theory to back such phenomenon. This point has been numerically
verified yet the reason for such behavior is still unclear to us and
merits further investigation. Numerical experiments show that for VV
polarization, SSD-NS-SA is less computationally efficient in terms of
run time and number of iterations than FBM-SA. However, as far
as convergence properties are considered, similar to HH polarization,
SSD-NS-SA improves over FBM-SA by changing cases from divergent
to convergent when the rms height and rms slope are large.

4. CONCLUSION

In this paper, we have developed an iterative numerical approach
based on the SSD algorithm in combination with a new splitting of
the impedance matrix to analyze EM scattering from 1-D dielectric
rough surfaces. For Gaussian surface with Gaussian spectrum, through
extensive numerical simulation, it is observed that for HH polarization,
the proposed method SSD-NS-SA requires roughly one half number of
iterations as needed by FBM-SA method. When the rms height is
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small, SSD-NS-SA takes more run time; when the rms slope is no
less than 0.33 and rms height is no less than 1.0λ, where λ is the
wavelength, SSD-NS-SA is more efficient. More importantly, SSD-
NS-SA obviously improves the convergence properties over FBM-SA
by changing cases from divergent to convergent when rms height is
no less than 2.0λ and rms slope is no less than 0.55 except for one
extreme case. For VV polarization, SSD-NS-SA is less computationally
efficient in terms of run time and number of iterations than FBM-SA.
However, as far as convergence properties are considered, similar to
HH polarization, SSD-NS-SA improves over FBM-SA when the rms
height and rms slope are large. Hence for both polarizations, the
proposed method demonstrates its suitability when dealing with truly
rough surfaces.

Identification of alternative procedure for the Jacobi-Richardson
shift to improve computational efficiency and meanwhile to maintain
good convergency properties is currently under way. Preliminary
results are also obtained for Gaussian surface with exponential
spectrum. After analyzing the data, new findings will be reported
in a future paper.
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