Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-30
Gaussian Process Modeling of CPW-Fed Slot Antennas
By
Progress In Electromagnetics Research, Vol. 98, 233-249, 2009
Abstract
Gaussian process (GP) regression is proposed as a structured supervised learning alternative to neural networks for the modeling of CPW-fed slot antenna input characteristics. A Gaussian process is a stochastic process and entails the generalization of the Gaussian probability distribution to functions. Standard GP regression is applied to modeling S11 against frequency of a CPW-fed secondresonant slot dipole, while an approximate method for large datasets is applied to an ultrawideband (UWB) slot with U-shaped tuning stub --- a challenging problem given the highly non-linear underlying function that maps tunable geometry variables and frequency to S11/input impedance. Predictions using large test data sets yielded results of an accuracy comparable to the target moment-method-based full-wave simulations, with normalized root mean squared errors of 0.50% for the slot dipole, and below 1.8% for the UWB antenna. The GP methodology has various inherent benefits, including the need to learn only a handful of (hyper) parameters, and training errors that are effectively zero for noise-free observations. GP regression would be eminently suitable for integration in antenna design algorithms as a fast substitute for computationally intensive full-wave analyses.
Citation
J. P. de Villiers, and Jan Pieter Jacobs, "Gaussian Process Modeling of CPW-Fed Slot Antennas," Progress In Electromagnetics Research, Vol. 98, 233-249, 2009.
doi:10.2528/PIER09083103
References

1. Kim, Y., S. Keely, J. Ghosh, and H. Ling, "Application of artificial neural networks to broadband antenna design based on a parametric frequency model," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 669-674, 2007.
doi:10.1109/TAP.2007.891564

2. Patnaik, A., D. E. Anagnostou, R. K. Mishra, C. G. Christodoulou, and J. C. Lyke, "Applications of neural networks in wireless communications," IEEE Antennas Propagat. Mag., Vol. 46, No. 3, 130-137, 2004.
doi:10.1109/MAP.2004.1374125

3. He, Q. Q., Q. Wang, and B. Z. Wang, "Conformal array based on pattern reconfigurable antenna and its artificial neural model," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 99-110, 2008.
doi:10.1163/156939308783122751

4. Rayas-Sanchez, J. E., "EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 420-435, 2004.
doi:10.1109/TMTT.2003.820897

5. Kaya, S., M. Turkmen, K. Guney, and C. Yildiz, "Neural models for the elliptic- and circular-shaped microshield lines," Progress In Electromagnetics Research B, Vol. 6, 169-181, 2008.
doi:10.2528/PIERB08031216

6. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural neworks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806

7. Ayestaran, R. G., F. Las-Heras, and J. A. Martinez, "Non uniform-antenna array synthesis using neural networks," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 8, 1001-1011, 2007.

8. Zainud-Deen, S. H., H. A. El-Azem Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

9. Kizilay, A. and S. Makal, "A neural network solution for identification and classification of cylindrical targets above perfectly conducting flat surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2147-2156, 2007.
doi:10.1163/156939307783152759

10. Rostami, A. and A. Yazdanpanah-Goharrizi, "Hybridization of neural networks and genetic algorithms for identification of complex Bragg gratings," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 643-664, 2008.
doi:10.1163/156939308784159598

11. Rasmussen, C. E. and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.

12. Zhang, Q.-J., K. C. Gupta, and V. K. Devabhaktuni, "Artificial neural networks for RF and microwave design --- From theory to practice," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179

13. Angiulli, G., M. Cacciola, and M. Versaci, "Microwave devices and antennas modelling by support vector regression machines," IEEE Trans. Magnetics, Vol. 43, No. 4, 1589-1592, 2007.
doi:10.1109/TMAG.2007.892480

14. Devabhaktuni, V. K., M. C. E. Yagoub, and Q.-J. Zhang, "A robust algorithm for automatic development of neural-network models for microwave applications," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 12, 2282-2291, 2001.
doi:10.1109/22.971611

15. MacKay, D. J. C., Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.

16. Qiu, M., M. Simcoe, and G. V. Eleftheriades, "High-gain meanderless slot arrays on electrically thick substrates at millimeter-wave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 2, 517-528, 2002.
doi:10.1109/22.982231

17. Jacobs, J. P. and J. Joubert, "Design of a linear nonuniform CPW-fed slot array with reduced sidelobe levels," Microw. Opt. Tech. Lett., Vol. 51, No. 9, 2175-2178, 2009.
doi:10.1002/mop.24532

18. Zeland Software IE3D Users Manual, Release 14, 2007.

19. Zhang, L., Y. C. Jiao, Y. L. Zhao, G. Zhao, Y. Song, Z. B. Wong, and F. S. Zhang, "Dual-band CPW-fed double H-shaped slot antenna for RFID application," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1050-1055, 2008.
doi:10.1163/156939308784158931

20. Zhang, T. L., Z. H. Yan, L. Chen, and Y. Song, "A compact dual-band CPW-fed planar monopole antenna for WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2097-2104, 2008.
doi:10.1163/156939308787537937

21. Zhang, G. M., J. S. Hong, B. Z. Wang, Q. Y. Qin, J. B. Mo, and D. M. Wan, "A novel multi-folded UBW antenna fed by CPW," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2109-2119, 2007.
doi:10.1163/156939307783152911

22. Chen, Y.-I., C.-L. Ruan, and L. Peng, "A novel ultra-wideband bow-tie slot antenna in wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 1, 101-108, 2008.
doi:10.2528/PIERL07112302

23. Lee, S. H., J. N. Lee, J. K. Park, and H. S. Kim, "Design of the compact UWB antenna with PI-shaped matching stub," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 10, 1440-1449, 2008.
doi:10.1163/156939308786348820

24. Wang, X., Z. F. Yao, Z. Cui, L. Luo, and S. X. Zhang, "Band-notched characteristics for CPW-fed printed monopole antenna with E shape slot," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2171-2178, 2008.
doi:10.1163/156939308787522483

25. Yao, Z. F., X. Wang, S. G. Zhou, B. H. Sun, and Q. Z. Liu, "Compact ultra-wideband slot antenna with dual band-notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 13, 1765-1774, 2008.
doi:10.1163/156939308786375217

26. Yao, Z. F., S. G. Zhou, X. Wang, L. Sun, B. H. Sun, and Q. Z. Liu, "Study of the band-notched functions for CPW-fed UWB antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2309-2321, 2008.
doi:10.1163/156939308787543859

27. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A planar U type monopole antenna for UWB applications," Progress In Electromagnetics Research Letters, Vol. 2, 1-10, 2008.
doi:10.2528/PIERL07121405

28. Chair, R., , A. A. Kisk, and K. F. Lee, "Ultrawide-band coplanar waveguide-fed rectangular slot antenna," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 227-229, 2004.
doi:10.1109/LAWP.2004.836580

29. Boyle, P. and M. Frean, "Dependent gaussian processes," Advances in Neural Information Processing Systems, Vol. 17, 217-224, 2005.

30. Jones, D. R., "A taxonomy of global optimization methods based on response surfaces," Journal of Global Optimization, Vol. 21, 345-383, 2001.
doi:10.1023/A:1012771025575