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Abstract—Gaussian process (GP) regression is proposed as a
structured supervised learning alternative to neural networks for the
modeling of CPW-fed slot antenna input characteristics. A Gaussian
process is a stochastic process and entails the generalization of the
Gaussian probability distribution to functions. Standard GP regression
is applied to modeling S11 against frequency of a CPW-fed second-
resonant slot dipole, while an approximate method for large datasets is
applied to an ultrawideband (UWB) slot with U-shaped tuning stub —
A challenging problem given the highly non-linear underlying function
that maps tunable geometry variables and frequency to S11/ input
impedance. Predictions using large test data sets yielded results of
an accuracy comparable to the target moment-method-based full-wave
simulations, with normalized root mean squared errors of 0.50% for
the slot dipole, and below 1.8% for the UWB antenna. The GP
methodology has various inherent benefits, including the need to learn
only a handful of (hyper) parameters, and training errors that are
effectively zero for noise-free observations. GP regression would be
eminently suitable for integration in antenna design algorithms as a
fast substitute for computationally intensive full-wave analysis.

1. INTRODUCTION

The design of antennas on layered media, such as those employed
in microstrip and coplanar waveguide (CPW) technologies, typically
requires finding the (optimal) geometry that would yield the desired
performance characteristics (e.g., impedance bandwidth, gain, axial
ratio, etc.). Sophisticated and accurate full-wave analyses software
such as moment-method-based codes are available for analyzing,
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in general, any particular geometry instance of the antenna under
consideration. However, optimization tools such as genetic algorithms
might require thousands of such full-wave analysis of different
geometries of the antenna to be optimized [1]. The ensuing
computational cost could render the optimization process prohibitively
cumbersome if not ultimately infeasible. In recent years this problem
has been widely addressed through the use of artificial neural networks
(ANNs); in the EM community at large, ANNs have in fact been
applied to both antenna modeling [2, 3] and microstrip circuit modeling
and design [4] including transmission line structures [5, 6] (other
applications of neural networks have included array synthesis [7],
direction-of-arrival estimation [8], radar target identification [9], and
identification of complex Bragg gratings [10]). After supervised
training of an ANN with a training set consisting of a limited number of
input-output pairs, e.g., particular geometries and their concomitant
performance characteristics obtained from full-wave simulations, the
ability of the network to generalize over the input space makes it
possible to quickly obtain the desired performance characteristics for
inputs not previously presented to the network. Hence great savings
in computational effort can been achieved compared to when all input
cases have to be analyzed by means of full-wave simulations.

In practice, neural networks are however not always easy or
straightforward to implement due to the lack of a “principled
framework” [11] for making certain decisions regarding setup and
implementation, such as the type of activation function and learning
rate to choose, and whether momentum should be used. Even for the
multilayer perceptron (MLP), which is ubiquitous in its application
to supervised learning problems, the number of hidden units that
should be chosen often is an open question, relying for a solution
on a trial-and-error approach or experience [12, 13]. While adaptive
techniques have been proposed for deleting or adding hidden units to a
neural network during training [14], this adds further complexity to the
modeling process. Furthermore, mappings involving highly non-linear
underlying functions require more hidden units — However, ANNs
with too large a number of hidden units may not be feasible [1]. Large
ANNs can also have problems with overfitting [11].

In this article, we introduce Gaussian process (GP) regression as a
supervised learning alternative to neural networks for the modeling of
antenna characteristics. A Gaussian process is a stochastic process that
entails the generalization of the Gaussian probability distribution to
functions. The Gaussian nature of the distribution leads to tractable —
even relatively simple — calculations when learning and inference need
to be performed. Under appropriate conditions, Gaussian processes
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can be considered equivalent to large neural networks [11]; however,
Gaussian processes are generally easier to implement and interpret.
One reason is that a Gaussian process model requires training of far
fewer parameters (in the order of the dimension of the input vectors)
than, e.g., a MLP with one hidden layer, where the number of weights
to be learned typically is in the order of Ni×Nh+Nh×No, with Ni, Nh,
and No the number of input, hidden, and output nodes respectively.
A Gaussian process is an instance of a so-called kernel machine; it
is differentiated by its probablistic basis from the support vector
regression machine (SVRM), another kernel machine that has very
recently found application in antenna-related problems (e.g., [13]).

The layout of the article is as follows. Section 2 gives key
theoretical background to standard regression with Gaussian processes
following [11]. In Section 3, standard GP regression is applied to the
modeling of the input reflection coefficient S11 against frequency of a
CPW-fed second-resonant slot dipole antenna. Then an approximate
regression technique for large datasets, the subset of datapoints
method, is applied to the challenging problem of modeling S11 against
frequency of an ultrawideband (UWB) CPW-fed slot antenna with U-
shaped tuning stub. Conclusions and suggestions for further work are
presented in Section 4.

2. THEORETICAL BACKGROUND

A Gaussian process describes a distribution over functions. More
specifically, it is a mathematical set consisting of an infinite number
of random variables, of which any subset is jointly Gaussian [11, 15]
(it is a natural extension of a jointly Gaussian distribution to the
case where the mean vector is infinitely long and the covariance
matrix is of infinite by infinite dimension). A GP can be notated as
f(x) ∼ GP(m(x), k(x,x′)), with x a position in RD-dimensional space,
and m(x) and k(x,x′) its mean and covariance functions respectively,
defined as [11, (2.13)]. Note that the GP encapsulates all possible
functions in the vast space of functions that subscribe to m(x) and
k(x,x′). The model is semi-parametric in the sense that any sample
function is not specified in terms of a finite number of parameters (such
as weights in the case of a linear model), but rather directly in the
space of functions. Consider for example a finite (practical) training
data set of n observations, D = {(xi, yi) | i = 1, . . . , n}. The inputs
xi are column vectors of dimension D, while the corresponding output
targets yi are scalars. The corresponding Gaussian process f(x) in
this case would be implemented as the collection of random variables
fi = f(xi), with any n-dimensional point under their jointly Gaussian
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distribution representing n values of a sample function with index set
the set of inputs xi.

The only parameterisation that takes place is the specification
of hyperparameters which determine the properties of the mean and
covariance functions. The present study uses the squared-exponential
covariance function k(xp,xq) = σ2

f exp(−1
2(xp − xq)>M(xp − xq)),

which gives the covariance between the output random variables f(xp)
and f(xq). Here, the matrix M = diag(`), with ` the vector of
positive characteristic length-scale parameters corresponding to the
components of the input vectors, and σ2

f is the signal variance (length-
scale parameters are indicative of how quickly change occurs along
the corresponding dimensions of the input space). Together, ` and σf

constitute the hyperparameters of the covariance function.
In order to carry out predictions, a jointly Gaussian distribution

(usually of zero mean) is assumed over the n random variables which
represent the training outputs and are contained in column vector f ,
and the n∗ random variables representing the test outputs contained
in f∗ — This is the prior distribution:

[
f
f∗

]
∼ N

(
0,

[
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
(1)

In (1), K(X, X∗) is the n × n∗ matrix of covariances evaluated
between all possible pairs of n training and n∗ test outputs, where the
columns of the D× n matrix X are the training input column vectors
{xi | i = 1, . . . , n}, and X∗ likewise contains the test input vectors;
the other submatrices of the covariance matrix are similarly defined.
(Training of the Gaussian process prior to inference is described below.)

The distribution of the test outputs conditioned on the known
training outputs y, or the posterior distribution, can then be expressed
as f∗|X∗, X,y ∼ N (m,Σ) (cf. [11, Eq. (2.19)]), with mean vector m
and covariance matrix Σ given by

m = K(X∗, X)K(X, X)−1y (2)
Σ = K(X∗, X∗)−K(X∗, X)K(X, X)−1K(X, X∗) (3)

In the above, the predictive mean m contains the most likely values of
the test outputs associated with the test input vectors in X∗, while the
diagonal of the covariance matrix Σ gives the corresponding predictive
variances. Conditioning on the known training data can be interpreted
as retaining in the posterior distribution only functions that pass
through the training data points.

The computational requirement for GP regression is O(n3) due
to the required inversion of K(X,X) which is of dimension n × n.
A number of methods of dealing with large datasets have been
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proposed [11]; here a subset of datapoints approach has been adopted
(see Section 3.2).

The hyperparameters may be found through a structured
methodology which involves a process similar to Bayesian model
selection [11]. It entails finding the hyperparameters for which the
negative log marginal likelihood, or error function, is a minimum. The
log marginal likelihood in the noise-free case is given by (cf. [11, (2.30)])

log p(y|X) = −1
2
y>K−1y − 1

2
log |K| − n

2
log 2π (4)

with K = K(X, X), |K| the determinant of K, y the training target
column vector, and X the matrix of input column vectors.

In what follows, training (optimization of hyperparameters) and
inference were carried out using existing computer implementations
of general algorithms for GP regression and negative log likelihood
minimization [11]; the regression algorithm employs numerically
efficient Cholesky decomposition for inverting K(X,X).

3. MODELING OF INPUT CHARACTERISTICS OF
CPW-FED SLOT ANTENNAS

3.1. Second-resonant Slot Dipole Antenna

Figure 1 shows a slot dipole antenna fed by CPW on a single-
layer dielectric substrate. When operated in the vicinity of its
second resonance, the antenna exhibits significantly wider impedance
bandwidth than a microstrip patch antenna on a comparable substrate;
other advantages include easy integration with microwave circuit
components due to the uniplanar configuration of the CPW feed
line and radiating slot. CPW-fed slots have frequently been used in
array applications, e.g., [16, 17]. An example of a practical situation
that requires many full-wave analyses of different slot geometries
over a range of frequencies is the generation of isolated slot self-
admittance data for use in a non-uniform linear array iterative design
algorithm such as [17], with the additional requirement that off-
resonance evaluation of array performance must be possible.

GP regression was used to model the input reflection coefficient
S11 of a single CPW-fed slot antenna over an input space spanned
by slot dimensions L and W , and frequency f . The parameter
ranges were (1 ≤ W ≤ 5)mm, (20 ≤ L ≤ 29)mm, and
(4.5 ≤ f ≤ 5.5)GHz; it was established that the extremes of
the geometry range correspond to significantly different S11-against-
frequency characteristics. Independent GP regression models were set
up for <[S11] and =[S11], the real and imaginary parts of S11.
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Figure 1. Top view of CPW-fed slot dipole antenna.

Training and test data were generated using IE3D [18], a full-
wave moment-method-based simulator that uses magnetic currents
to model the slots while assuming laterally infinite ground planes
and dielectrics. A fixed substrate was used with dielectric constant
εr = 3.38 and thickness h = 0.508mm, and the feed line was a 50 Ω
CPW with w = 4 mm and s = 0.2mm. A database of potential
training data was generated by computing S11 against frequency for 30
antenna geometries corresponding to pairs of values of W and L that
were obtained by uniform random sampling from the two-dimensional
geometry space; the frequencies were 4.5 to 5.5 GHz in steps of 0.1 GHz.
A set of n = 84 training input vectors {xi = [Wi Li fi]> | i = 1, . . . , n}
with corresponding output target scalars yi = <[S11i] or =[S11i] were
randomly selected from this database. Test data involving 15 new pairs
of W and L were similarly generated; the total number of test points
was n∗ = 165.

For each regression, the training set was used to “learn” (optimize)
the hyperparameters Θ = [`W , `L, `f , σf ] of the covariance function
by minimizing the negative log marginal likelihood. Since the
real and imaginary parts of S11 are modeled separately, each part
will have its own set of hyperparameters. The hyperparameter
values thus obtained were ΘR = [4.4018, 1.0323, 1.9271, 0.3200] and
ΘI = [3.1802, 1.1443, 2.5290, 0.3510] for the real and imaginary parts
respectively. Predictions were then made for the test data set.
Table 1 gives the root mean square error (RMSE) and the percentage
normalized RMSE (defined as in [12]) for both training and test sets
(note that −1 ≤ <[S11], =[S11] ≤ 1). For the test points, the
normalized RMSE was 0.50% for both <[S11] and =[S11] regressions —
A good result confirmed by (absolute values of) normalized maximum
residuals of about 2% for each model. The RMSE values for the
training points were effectively zero, confirming that the squared-
exponential covariance function adopted for the purposes of the present
study had sufficient flexibility.
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Table 1. Root mean squared error (RMSE) and percentage
normalized RMSE for training points (n = 84) and test points (n∗ =
165).

<[S11] =[S11]
RMSE RMSE (%) RMSE RMSE (%)

Train 3.200e-12 3.41e-10 8.574e-12 8.59e-10
Test 4.705e-3 0.50 3.137e-3 0.50
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Figure 2. Regression results corresponding to the test geometry
[W,L] = [4.257, 26.78]mm after training with n = 84 data points.

Figure 2 shows, for the test geometry with W = 4.257 mmand L =
26.78mm, the predictive mean, predictive 95% confidence region (±2
predictive standard deviations) about the mean, and target function
for the <[S11] and =[S11] regression models after training with 84 data
points (this was a typical result). The predictive standard deviation
obtained from (3) is the model’s own estimate, based on the training
and test input data, of the uncertainty with respect to its predictions
(neither training nor test targets are required for making this estimate).
The predictive mean and target functions are virtually coincident for
both models, with confidence regions that are very narrow (they are
barely visible on the graphs), indicating very low uncertainty.
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3.2. Ultrawideband Slot Antenna with U-shaped Tuning
Stub

Recent years have seen the introduction of a variety of types of
CPW-fed antennas for dual-band [19, 20] and ultrawideband [21–
27] applications. The focus of the present study is a CPW-
fed ultrawideband rectangular slot antenna with U-shaped tuning
stub [28], which is shown in Fig. 3. The modeling task, as defined
here, was to describe S11 against frequency over the ultrawide band of
frequencies 2–10 GHz as the five tuning stub dimensions a, b, c, d, and
e are varied; their ranges are given in Table 2 (other dimensions and
parameters were the same as in [28] for purposes of comparison later
on). Such a model would be useful when it is desired to optimize the
bandwidth according to a prespecified ultrawideband criterium.

Figure 3. Top view of CPW-fed rectangular slot antenna with U-
shaped tuning stub. W = 32.2mm; L = 21.1mm; w = 1.88mm and
s = 0.125mm (50Ω CPW); εr = 3.38; h = 0.813 mm [28].

Table 2. Parameter ranges for ultrawideband slot antenna.

Parameter Min. Max.

a (mm) 6 14
b (mm) 6 12
c (mm) 0.5 2.5
d (mm) 0.5 2.5
e (mm) 0.5 2.5
f (GHz) 2 10
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The modeling of the input impedance of ultrawideband antennas
is challenging given that it is highly nonlinear, containing multiple
resonances within the band with steep zero-crossings in the imaginary
part and sharp peaks in the corresponding portions of the resistance
curves. Many data points are required for an accurate representation,
resulting in a large neural network if this is the regression means of
choice (e.g., 250 hidden units and 6769 weights in [1]). As in the
case of the second-resonant slot dipole antenna, we chose to model
the reflection coefficient S11, which at least has the advantage of
contained extreme values since |S11| ≤ 1. Training and test data
were generated using IE3D in a manner similar to the case of the slot
dipole. In the present case, a total of n = 50625 potential training data
points were generated, consisting of 625 randomly chosen geometry
points, each evaluated at 81 frequencies. The test set consisted of
175 geometry points, also randomly selected and evaluated at 81
frequencies, resulting in a total of n∗ = 14175 test data points.

Since the computational complexity of the GP regression method
scales according to O(n3), using the complete training data set is
computationally prohibitive; this is predominantly due to the inversion
of K(X,X) required in (2) and (3). To address this problem, the subset
of datapoints method [11] was utilised — It entails selecting an “active”
set of m training points from the total set of n training points, where
m < n. Only the active set is then used in the regression.

The first step was to optimize the hyperparameters using a
random subset of 2048 training points, which can be handled with
computational ease. It is important that enough training points be
used, since the hyperparameters are determined once only, and the
performance of all subsequent regressions depend on their choice.
The hyperparameters Θ = [`a, `b, `c, `d, `e, `f , σf ] thus determined
were ΘR = [1.1831, 1.0347, 3.6484, 2.5633, 3.0156, 0.1885, 0.2300] and
ΘI = [1.2317, 1.0693, 3.8164, 2.6073, 2.6112, 0.1952, 0.2439].

The next step was to select a subset of training data points for
making predictions with respect to the test data set using (2) (this is
different from standard GP regression, where the training data used
for determining the hyperparameters are also used for performing the
regression). The most straightforward, but also sometimes the least
efficient way of implementing the selection, is to simply randomly
select a subset in such a way that each point has an equal probability
of being chosen. However, since this might be wasteful of data, it
was deemed appropriate to also consider jointly selecting a subset of
datapoints according to some optimal criterion. The optimal method of
selecting a subset of data points involves combinatorics and for most
large datasets this becomes infeasible. A more practical method is
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“greedy” sequential selection. This involves starting with a small base
set of randomly selected training data and effecting GP regression at
the same positions as the remaining unused data points. The predictive
variance (PV) criterion selects the point where the predictive variance
is maximised to be included in the training set. This effectively
searches the remaining unused data point positions where the model
is the most uncertain, and then reduces the uncertainty at that point
to zero by including that data point in the training set. On the other
hand, when using the squared error (SE) criterion, remaining unused
data point positions are searched to find where the SE is maximised.
The SE at that point is then reduced to zero by including the relevant
data point. Ideally, one would like to cycle through all remaining
unused data points at each step. However, for the present problem,
that would entail performing regression at 50625 points in order to
include only a single point in the training set. This is computationally
infeasible, and hence a new subset of 4096 randomly selected unused
data points was considered at each inclusion step. This means that
each unused point would have been visited approximately once in every
ten steps.

For the size of training subsets considered here, and given the
above set of hyperparameters, performance of the three methods was
fairly similar, with the PV and SE greedy selection methods somewhat
outperforming the random selection method in terms of root mean
squared error. In particular, for m = 1024 data points the percentage
RMSE for the test data set was 3.49%, 3.13%, and 2.93% for the
random (RND), PV, and SE methods respectively (training errors
were effectively zero). This is already very good given the great
variability of S11 against frequency over the geometry input space.
For m = 4096 training points, the percentage RMSE further decreased
to 1.89%, 1.51%, and 1.63% for RND, PV, and SE respectively. Since
computational complexity of GP regression is proportional to O(n3),
the smaller training set might be preferable and quite likely would be
acceptable for most practical problems (in [1], a broadband antenna
was successfully optimized using a neural network substitute for full-
wave computations of input impedance that had a RMSE training error
of 16.4%). It is however noteworthy that in order to perform regression
according to (2) for a series of test points, as would be the case in an
optimization context, inversion of K(X,X) has to be performed once
only, namely when doing the first regression; the stored result can be
used for subsequent regressions.

Figure 4 shows the predictive mean, 95% confidence region, and
target S11 function for a test geometry representing a typical result; the
training data subset had 4096 data points and was selected according to
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the SE criterion. The corresponding predictive mean and target input
impedance plots are shown in Fig. 5 indicating impressive modeling
of sharp resonance peaks. The impedance plots were obtained using
the standard transformation of the S11 test points according to Zin =
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Figure 4. <[S11] and =[S11] against frequency for UWB test geometry
[a, b, c, d, e] = [9.57, 10.75, 1.54, 2.37, 1.38]mm.
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Z0
1+S11
1−S11

, and thus required the results from both regression models
(Z0 = 50 Ω).

Figure 6 shows plots of S11 against frequency for a test geometry
designed for optimal bandwith given in [28] (this test geometry was not
part of the original randomly generated test set). The corresponding
|S11| plot is shown in Fig. 7 for comparison with [28, Fig. 2]. Again,
the regression results are very good, and of comparable quality with
respect to those of the test geometry of Figs. 4 and 5.
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Figure 6. <[S11] and =[S11] against frequency for test geometry
optimized for bandwidth obtained from [28]: [a, b, c, d, e] =
[12, 9, 2, 1, 1]mm.
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Figure 8 shows the scatter plot of model predictions plotted
against the corresponding target values for the complete test set (14175
points) utilizing the above training set of 4096 points selected using the
SE criterion. The intercepts and slopes obtained by linear regression
were 0.996 and −0.000762 (<[S11]) and 0.997 and −0.000482 (=[S11]).
The models’ performances are very satisfactory, with small intercepts
indicating negligible model bias. The slopes are very close to one,
indicating negligible multiplicative factor error. There are a few
significant outliers, but they number by the tens within a test set
consisting of 14175 points.

Figure 8. Model output against target value scatter plot for 14175
uniformly random selected test points.

4. CONCLUSION

GP regression presents an attractive structured alternative methodol-
ogy to neural networks for supervised learning and prediction of an-
tenna characteristics that might otherwise only be attainable through
computationally intensive, repetitive full-wave calculations. It requires
far less tuning, validation and training than neural network strategies.
In the present study, GP regression has been applied to the modeling of
S11 (and/or input impedance) against frequency of CPW-fed slots. The
second-resonant slot dipole, which has well-behaved characteristics, re-
quired a fairly small set of training samples for accurate modeling of
S11 as a function of two tunable geometry parameters and frequency
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using basic GP regression. Normalized RMSEs of 0.50% were achieved
for both the <[S11] and =[S11] regressions. The more difficult problem
involved a CPW-fed UWB slot antenna with U-shaped tuning stub,
where five tunable stub dimensions and frequency map to S11 through
a highly non-linear underlying function. Since tens of thousands of
potential training points were available and computational complexity
scales with size of the data set, direct application of GP regression was
not feasible, and an approximate technique — the subset of data points
method — was used. Excellent predictions were demonstrated using
a training set of 4096 points selected using the SE method for data
selection (a further 2048 randomly selected data points were required
for initial training of the hyperparameters), with normalized RMSEs of
1.63% and 1.75% for the <[S11] and =[S11] regressions. Various bene-
fits of the GP methodology were discussed, including the fact that the
only tunable parameters are the hyperparameters of the covariance
function, which can be determined in a structured manner based on
Bayesian model selection. Also, in modeling applications which have
noiseless observations such as the ones described in this paper, training
errors will effectively be zero. This is in contrast with neural network
models which can retain a fairly significant error at these points when
regression involving highly-nonlinear functions is carried out. Compu-
tational complexity does not scale significantly with input dimension-
ality — This makes GP regression particularly suitable for modeling
problems which have a high number of input parameters (extension of
the model of the ultrawideband slot to include the length and width
of the outer rectangular slot as tunable parameters, if desired, would
be straightforward and only add two length-scale hyperparameters to
the model). Modeling of the real and imaginary parts of S11 were
achieved using two separate GP models. However, there exists strong
correlation between these components, and a model taking these cor-
relations into account is sure to maintain performance levels with the
use of fewer training data points (cf. [29]). Selection and sampling of
training points might be further explored along the lines of [30].
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