Vol. 96
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-09-30
On the Use of Dimension and Lacunarity for Comparing the Resonant Behavior of Convoluted Wire Antennas
By
Progress In Electromagnetics Research, Vol. 96, 361-376, 2009
Abstract
This paper analyzes the possibility to use dimension and lacunarity for comparing the resonant behavior of different convoluted wire antennas, including prefractal dipoles. Since previous studies have proved that the Hausdorff fractal dimension is not suitable for antenna comparison purposes, this work proposes the adoption of a different approach for evaluating the dimension by using the measurement at scale δ, which is more suitable for analyzing real phenomena. The results provided by this measure are compared to those obtained by using the average lacunarity. The objective is to verify if, given two convoluted wire dipoles, the dimension and average lacunarity provide sufficient information to infer which dipole exhibits the lower resonances.
Citation
Massimiliano Comisso, "On the Use of Dimension and Lacunarity for Comparing the Resonant Behavior of Convoluted Wire Antennas," Progress In Electromagnetics Research, Vol. 96, 361-376, 2009.
doi:10.2528/PIER09082505
References

1. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888

2. Naghshvarian-Jahromi, M. and N. Komjani, "Novel fractal monopole wideband antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 195-205, 2008.
doi:10.1163/156939308784160758

3. Cui, G., Y. Liu, and S. Gong, "A novel fractal patch antenna with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2403-2411, 2007.
doi:10.1163/156939307783134335

4. Chen, X. and K. Huang, "Wideband properties of fractal bowtie dipoles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1511-1518, 2006.
doi:10.1163/156939306779274345

5. Ataeiseresht, R., C. H. Ghobadi, and J. Nourinia, "A novel analysis of minkowski fractal microstrip patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1115-1127, 2006.
doi:10.1163/156939306776930268

6. Wu, W. and Y. H. Bi, "Switched-beam planar fractal antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 409-415, 2006.
doi:10.1163/156939306775701786

7. Yeo, U. B., J. N. Lee, J. K. Park, H. S. Lee, and H. S. Kim, "An ultra-wideband antenna design using sierpinski sieve fractal," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1713-1723, 2008.
doi:10.1163/156939308786390148

8. Salmasi, M. P., F. H. Kashani, and M. N. Azarmanesh, "A novel broadband fractal sierpinski shaped microstrip antenna," Progress In Electromagnetics Research C, Vol. 4, 179-190, 2008.

9. Khan, S. N., J. Hu, J. Xiong, and S. He, "Circular fractal monopole antenna for low VSWR UWB applications," Progress In Electromagnetics Research Letters, Vol. 1, 19-25, 2008.
doi:10.2528/PIERL07110903

10. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "Fractal dimension and frequency response of fractal shaped antennas," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 222-225, Jun. 22-27, 2003.

11. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2296-2303, 2003.
doi:10.1109/TAP.2003.816352

12. Gonzalez, J. M. and J. Romeu, "Experiences on monopoles with the same fractal dimension and different topology ," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 218-221, Jun. 22-27, 2003.

13. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-27, 2003.
doi:10.1109/MAP.2003.1232160

14. Sengupta, K. and K. J. Vinoy, "A new measure of lacunarity for generalized fractals and its impact in the electromagnetic behavior of Koch dipole antennas," Fractals, Vol. 14, No. 4, 271-282, 2006.
doi:10.1142/S0218348X06003313

15. Comisso, M., "Theoretical and numerical analysis of the resonant behavior of the minkowski fractal dipole antenna," IET Microwaves, Antennas and Propagation, Vol. 3, No. 3, 456-464, 2009.
doi:10.1049/iet-map.2008.0249

16. Ansarizadeh, M., A. Ghorbani, and R. A. Abd-Alhameed, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403

17. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, 1990.

18. Burke, G. J. and A. J. Poggio, Numerical Electromagnetic Code (NEC) Method of Moments, Naval Ocean Systems Center, 1980.

19. Martorella, M., F. Berizzi, and E. D. Mese, "On the fractal dimension of sea surface backscattered signal at low grazing angle," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1193-1204, 2004.
doi:10.1109/TAP.2004.827533

20. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, 1977.

21. Allain, C. and M. Cloitre, "Characterizing the lacunarity of random and deterministic fractal sets," Physical Review A, Vol. 44, No. 6, 3352-3558, 1991.
doi:10.1103/PhysRevA.44.3552

22. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 1997.