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Abstract—This paper analyzes the possibility to use dimension and
lacunarity for comparing the resonant behavior of different convoluted
wire antennas, including prefractal dipoles. Since previous studies have
proved that the Hausdorff fractal dimension is not suitable for antenna
comparison purposes, this work proposes the adoption of a different
approach for evaluating the dimension by using the measurement at
scale δ, which is more suitable for analyzing real phenomena. The
results provided by this measure are compared to those obtained by
using the average lacunarity. The objective is to verify if, given
two convoluted wire dipoles, the dimension and average lacunarity
provide sufficient information to infer which dipole exhibits the lower
resonances.†

1. INTRODUCTION

The study and design of small antennas able to provide multiple
resonant frequencies represents one of the fundamental topics of
current research efforts in antenna development. The geometrical
characteristics have a strong impact on the resonances of a radiator,
since a proper selection of the geometry can enable the reduction of
the overall antenna size simultaneously, guaranteeing a multi-band
behavior. Accordingly, several research papers have proposed novel
antenna design techniques based on meander line curves and fractal
geometry [1–9]. In many cases, the selection of the geometry satisfying
the design specifications requires accurate electromagnetic simulations
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and the adoption of proper optimization techniques. In fact, usually
the theoretical prediction of the resonant behavior of an antenna is
a problem difficult to solve, even if some efforts have been made to
better characterize the relationship between the antenna geometry and
electromagnetic characteristics of the radiator [10–16]. In particular, in
fractal antenna design, recent studies have investigated the possibility
to relate the Hausdorff fractal dimension to the position of the resonant
frequencies of a convoluted dipole [10, 11]. However, as shown in [12],
the Hausdorff dimension alone, which may be significant only for
prefractal antennas, does not play a decisive role in determining the
resonant behavior of prefractal dipoles. Besides, several studies confirm
that many convoluted (non-prefractal) radiators can provide multiple
resonances and/or miniaturization capabilities [13]. Hence, the fractal
dimension, as it is defined in fractal analysis [17], seems not suitable
to characterize the real curves that are adopted in antenna design.
Recently, another mathematical quantity, called lacunarity, has been
adopted to examine the resonant behavior of some prefractal wire
antennas, such as the Von Koch and Minkowski dipoles [14, 15]. With
respect to Hausdorff dimension, lacunarity can be applied both to
prefractal and non-prefractal antennas. However, the possibility to
compare the resonant behavior of two wire antennas moving from the
knowledge of their geometrical characteristics remains an open issue.

This paper investigates the possibility to use dimension and
average lacunarity for comparing the resonant frequencies of
convoluted wire antennas, including prefractal and meander line
dipoles. A different method for calculating the dimension is proposed.
This method is based on the measurement at scale δ, which is often
adopted to numerically analyze real phenomena. The results provided
by this measure are combined to those obtained by using the average
lacunarity in order to study which characteristics of the resonances
can be inferred from these two mathematical quantities. The purpose
is to verify if, given two convoluted wire dipoles having the same
height and the same total length, the dimension and average lacunarity
provide sufficient information to infer which dipole exhibits the lower
resonances.

The paper is organized as follows. Section 2 introduces the
geometries considered in the comparison. Section 3 describes the
adopted mathematical quantities. Section 4 presents and discusses
the main results. Section 5 summarizes the paper contributions and
the most important conclusions.
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2. GEOMETRY DESCRIPTION

The dipoles considered in the comparison have the same height
H = 1m, the same wire diameter a = 1.5mm and are generated
according to three geometries: Minkowski geometry, generalized Von
Koch geometry, and rectangular meander line (Fig. 1). The radiators
generated using the first two geometries are prefractal antennas, while
non-prefractal dipoles are obtained employing the latter geometry.
In Fig. 1 the symbol n denotes the iteration, when referred to the
prefractals, while it denotes the number of turns, when referred to the
meander line.

The generation procedure of the Minkowski curve moves from a
line segment of height H/2, called initiator and corresponding to the
iteration n = 0, and from the line obtained at the first iteration, called
generator (Fig. 1(a)). The generator is composed by three vertical
segments, having a length equal to one-third of the original height, and
two horizontal segments, having a length equal to w/3 of the original
height, where the parameter w (0 ≤ w ≤ 1) is called indentation. The
Minkowski prefractal at n-th iteration is obtained replacing by the
generator each straight segment of the prefractal corresponding to the
(n− 1)-th iteration, thus obtaining a curve having a length:

L =
H

2

(
1 +

2
3
w

)n

. (1)

By iterating this process for n approaching infinity one obtains the
Minkowski curve, whose Hausdorff dimension DH can be obtained by
numerically solving the following equation [1]:

3 + 2wDH − 3DH = 0. (2)

(b)

H

2

H

6

H

6
w

H

6

H

2

 

e2

e3

e1

H

2

n = 0 n = 1 n = 2 n = 3 n = 0 n = 1 n = 2 n = 3 n = 0 n = 1 n = 2 n = 3

(a) (c)

ϑ

Figure 1. Adopted geometries: (a) Minkowski geometry, (b) Von
Koch geometry, (c) rectangular meander line geometry.
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Observe that, when n approaches infinity, the Minkowski curve remains
confined in a finite area, but its length approaches infinity.

An identical procedure, but using a different generator, leads to
the generalized Von Koch prefractal (Fig. 1(b)). In this case the
generator is composed by four segments of length H/[4(1 + cos θ)],
where θ (0 ≤ θ < π/2) represents the indentation angle. The successive
iterations of the curve are obtained replacing each straight segment by
the generator. This procedure leads to a curve having a length:

L =
H

2

(
2

1 + cos θ

)n

, (3)

at the n-th iteration and a Hausdorff dimension for n approaching
infinity that can be evaluated as [14]:

DH =
ln 4

ln[2(1 + cos θ)]
. (4)

Finally, the rectangular meander line in Fig. 1(c) is generated according
to the classical Euclidean geometry, and hence it does not belong to
the set of prefractal antennas. In this case the symbol n denotes the
number of turns, and the size of each wire segment is selected according
to the desired total length. More precisely, the pitch is selected as
e1 = e3 = H/[2(2n + 1)] and the width as e2 = (2L−H)/(4n).

The simulation tool adopted for evaluating the resonances of the
center-fed dipoles generated according to the three geometries is the
Numerical Electromagnetic Code (NEC-2) [18], while the geometrical
structures are developed by recursive loops in Matlab and then passed
to the electromagnetic simulator. The dipoles are discretized by using
a minimum wire segment ε that satisfies the relationships 10−3λ ≤ ε ≤
10−1λ, where λ is the wavelength, and ε/(a/2) ≥ 2. These practical
rules satisfy the convergence requirements of NEC2 and guarantee the
accuracy of the calculated resonances.

3. DIMENSION AND LACUNARITY

Several definitions of fractal dimension have been formulated in fractal
analysis. The most diffused and important one is the definition
provided by Hausdorff, which can be applied to any fractal set. A
complete mathematical treatment of this quantity can be found in [17].
Unfortunately, Hausdorff dimension is unable to provide sufficient
information to compare prefractal dipoles developed considering
different generation rules [12]. This limitation may be mainly due
to the fact that the Hausdorff dimension characterizes a fractal (ideal)
curve that, as a matter of fact, is rather different from the geometries
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adopted in practical applications, where only dipoles corresponding to
low iteration values are realizable. In fact, the Hausdorff dimension
is independent of the fractal iteration and total length of the curve
that determines the geometry of a dipole. Instead, for antenna
research purposes, a measure of dimension more adherent to the actual
geometry of a dipole may be desirable. For this aim, in this study we
propose the use of the measurement at scale δ [17], whose computation
can be performed as follows.

Consider a set Ω that represents a binary image consisting of a
plane curve in the two-dimensional space. The set Ω can be digitized in
an underline binary matrix in which the zero entry (black) represents
an empty pixel, and the one entry (white) denotes the presence of a
full pixel (belonging to the plane curve). Consider now a regular grid
composed by square boxes of edge δ and evaluate the number of boxes
containing at least one full pixel N(δ) (Fig. 2). The measurement at
scale δ, which will be indicated in the following using the symbol D, can
be obtained by calculating N(δ) for several scales δ, chosen between
a minimum value δmin and maximum one δmax with a step δs. If the

 

Figure 2. Example of a binary
image having a resolution of 432×
576 pixels and representing a Von
Koch dipole at the third iteration
with an example of grid (in red)
generated using a box of δ = 60
pixels. Observe that, since each
square box of the grid has 60
pixels, we obtain a 7× 9 grid.
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Figure 3. Numerical evaluation
and first order approximation of
ln[N(δ)] as a function of lnδ for
the image in Fig. 2. The opposite
of the slope of the straight line
provides the dimension.
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function N(δ) obeys a power law:

N(δ) ∼= Cδ−D, (5)

where C is a constant, (5) can be reformulated in a log-log scale as:

ln[N(δ)] ∼= lnC −D ln δ. (6)

In general, for real digitized curves, N(δ) does not exactly obey a
power law, hence, a first-order approximation of ln[N(δ)] as a function
of ln δ is required. The slope of this approximating straight line is
equal to −D (Fig. 3). For ideal fractals D must be evaluated by
considering the limit of − ln[N(δ)]/ ln δ for δ approaching zero, while
for real curves a finite range of δ can be used. The adoption of the
measurement at scale δ as a dimension for characterizing the set Ω
enables to account for the actual shape of a curve. Even if, in a
strict mathematical sense, D may be not considered a dimension, this
quantity is appealing for computational and experimental purposes,
when real phenomena must be analyzed [19]. Observe that, differently
from the Hausdorff dimension, the measurement at scale δ can also be
applied to non-prefractal curves and hence allows to analyze the entire
family of convoluted wire dipoles.

Another quantity adopted to characterize a fractal set is the
lacunarity, which provides information regarding the heterogeneity of
an object and can be viewed as a measure of the distribution of the
gaps in its topology [20]. More precisely, lacunarity is able to quantify
the deviation from the translational invariance of the considered object
by describing the distribution of gaps within a set at multiple scales.
Thus, when an object becomes more lacunar, the spatial arrangement
of the gaps in its geometrical structure becomes more heterogeneous.
Similar to the measurement at scale δ, lacunarity can be evaluated both
for fractal and non-fractal sets and hence is suitable for investigating
both prefractal and non-prefractal curves.

For the above defined binary set Ω, the lacunarity can be evaluated
considering the mass distribution probability of pixels P (q, δ), which
can be obtained from the statistic of the boxes at scale δ containing q
(1 ≤ q ≤ qmax) full pixels. The lacunarity of Ω at scale δ is defined as
the ratio between the second moment of P (q, δ) and the square of its
mean [21]:

Λ(δ) =

qmax∑

q=1

q2 P (q, δ)




qmax∑

q=1

q P (q, δ)




2 . (7)



Progress In Electromagnetics Research, PIER 96, 2009 367

A numerical method for the estimation of Λ(δ) is the gliding-box
algorithm [21]. This algorithm scans the binary matrix that digitizes
the considered set Ω using square boxes of different sizes, starting from
the minimum one δmin and increasing the size by a step δs until the
maximum box size δmax is reached. For each box size the scan begins
from the upper left corner of the matrix. Then, the box is horizontally
moved by a certain number of columns ρ and, once the left end of the
matrix is reached, the box is vertically moved by ρ lines. For each
position the number of full pixels is evaluated, and so the number
of boxes of side δ and mass q, M(q, δ), can be obtained. The mass
distribution probability of pixels P (q, δ) is the ratio between M(q, δ)
and the number of boxes at scale δ. Once P (q, δ) has been estimated,
the lacunarity can be calculated using (7). Since Λ(δ) is dependent on
the box size, an average measure is proposed in [14]. In this study, this
measure is reformulated according to the adopted discretized approach,
thus defining the average lacunarity as:

Λ̄ = ln

δs ·
δmax∑

δ=δmin

Λ(δ)

δmax − δmin
. (8)

Both adopted measures, D and Λ̄, are influenced by the minimum
box size δmin, the maximum one δmax, and the box size step δs. Besides,
the lacunarity depends also on the shift ρ. Since we are comparing
dipoles having the same height, length and wire radius, we expect
that the resonances provided by the electromagnetic simulator, even if
often distinguishable, are rather close. Hence, if we want to investigate
the possible information that can be obtained from the dimension and
average lacunarity in terms of resonant frequencies, a really accurate
computation of D and Λ̄ must be performed. Thus, many dense grids
must be used. Accordingly, remembering that each image describing a
dipole is digitized in a 432×576 binary matrix (Fig. 2), the parameters
are selected as δmin = 1, δmax = 431, δs = 1, and ρ = 1. These
choices lead to a considerable increase of the computation time for
the gliding-box algorithm, but guarantee a really accurate estimation
because all possible grids are taken into account. Once the parameter
setting is completed, a further element must be carefully taken into
account to have a good correspondence between the physical dipoles
simulated by NEC2 and the images analyzed in terms of dimension
and lacunarity. This element is the wire radius, which determines the
width of the curve in the image. Consider first that, as described
in Section 2, we have a cylindrical wire having a diameter equal
to 1.5mm, corresponding to an equivalent strip of width equal to
2 · 1.5 = 3 mm [22]. Besides, observe that the dipole of height equal to
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Figure 4. First resonant frequency of the three considered dipoles as a
function of the total length for different values of n: MK — Minkowski,
VK — Von Koch, MR — meander line.

one meter is plotted with a height of 354 pixels in a 432× 576 binary
image (Fig. 2). Therefore, we can obtain the correctly rescaled width
(in pixels) of the curve in the image as 3 · 354/1000 ∼=1. Hence, the
equivalent width in the processed image is equal to one pixel.

4. NUMERICAL RESULTS

This section presents the resonances provided by NEC2 simulations
and discusses the results obtained in terms of dimension and average
lacunarity. Both the gliding-box algorithm and measurement at scale
δ are implemented in Matlab. Figs. 4–6 show the first three resonant
frequencies of the considered dipoles as a function of the total length
LT = 2L, while Figs. 7–9 report, still as a function of LT , the
Hausdorff dimension, the measurement at scale δ, and the average
lacunarity, respectively. The markers in the figures have been inserted
to emphasize the possible interceptions between the curves in order to
simplify the interpretation of the results.

We can immediately observe from a comparison between Figs. 4–6
and Fig. 7 that, as already proved in [12], the Hausdorff dimension does
not provide significant information regarding the relative differences
between the resonances of dipoles generated according to different
geometrical rules. In fact, from the point of view of DH , the Von



Progress In Electromagnetics Research, PIER 96, 2009 369

1.2 1.33 1.47 1.6
150

200

250

300

350

400

f r
is

[M
H

z
]

n =1

LT [m]
1.4 1.8 2.2 2.6

150

200

250

300

350

400
n =2

LT [m]
2 2.53 3.07 3.6

150

200

250

300

350

400
n =3

LT [m]

MK

VK

MR

MK x VK

VK x MR

MK

VK

MR

MK x VK

VK x MR

MK

VK

MR

Figure 5. Second resonant frequency of the three considered dipoles
as a function of the total length for different values of n: MK —
Minkowski, VK — Von Koch, MR — meander line.

1.2 1.33 1.47 1.6
200

250

300

350

400

450

500

550

600

650

f
ri
s

[M
H

z
]

n =1

LT [m]
1.4 1.8 2.2 2.6

200

250

300

350

400

450

500

550

600

650
n =2

LT [m]
2 2.53 3.07 3.6

200

250

300

350

400

450

500

550

600

650
n =3

LT [m]

MK

VK

MR

MK

VK

MR

MK x VK

VK x MR

MK

VK

MR

Figure 6. Third resonant frequency of the three considered dipoles
as a function of the total length for different values of n: MK —
Minkowski, VK — Von Koch, MR — meander line.

Koch geometry should be able to always provide lower resonances than
the Minkowski one for n = 2, 3, while the opposite should happen for
n = 1, but this behavior is not confirmed by the resonance curves.
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Besides, DH cannot be evaluated for the rectangular meander line and
hence is not general enough to describe all possible real convoluted
dipoles. Observe that the possibility of having different values of DH
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for equal values of LT and different values of n does not contradict
the theory, which states that DH is independent of the iteration. To
this purpose, consider the following arguments, which are referred to
the Minkowski curve but hold also for the Von Koch one. To obtain
the same value of LT = 2L for two different values of n, we have to
use two different values of the indentation w by inverting (1), thus
obtaining two different values of DH by solving (2). Therefore, to
generate dipoles with the same LT and different n, we have to refer to
different fractal curves.

More information regarding the behavior of the resonances can
be inferred from the measurement at scale δ (Fig. 8). It is worth to
notice that, as expected, D is an increasing function of LT , while the
resonances are decreasing functions of LT . This fact can be explained
remembering that the dimension measures the space filling capabilities
of an object. Therefore, we may expect a sort of reciprocity between
the curves representing the resonances and those representing D. For
example, comparing Figs. 4–6 to Fig. 8 for n = 3, we can observe that
the higher is the dimension of a geometry, the lower are its resonances.
In addition to the absence of interceptions for n = 3, the measurement
at scale δ confirms the two interceptions for n = 2. Besides, D can also
be applied to the rectangular meander line, enabling the comparison
of this structure with the prefractal ones. Thus, the measurement
at scale δ seems a more interesting quantity for comparison purposes
with respect to Hausdorff dimension. The ability of D to provide a
measure that is more adherent to the actual geometry of a dipole, as
compared to DH , may be explained remembering that the calculation
of the measurement at scale δ is based on a sequence of grids at different
scales that enables a more detailed analysis of the real shape of a dipole.
However, D is still unable to describe the relative differences between
the resonances for n = 1, and the positions of the interceptions for
n = 2 are rather different from those shown in Figs. 4–6.

A considerable analogy can be noticed between Figs. 4–6 and the
average lacunarity reported in Fig. 9. Observe that the lacunarity
is related to the gaps present in a geometry, thus Λ̄ is a decreasing
function of LT . The average lacunarity seems to provide an accurate
information, since Λ̄ has two interceptions for n = 1, two interceptions
for n = 2 and no interceptions for n = 3. Besides, with respect to
the curves describing D, the positions of the interceptions are closer
to those of the resonance curves. This behavior can be explained
observing that the lacunarity, being evaluated using the gliding-
box algorithm, does not consider only boxes at different scales, as
already done by the measurement at scale δ, but also considers the
translation of these boxes, thus capturing the characteristics related to
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the inhomogeneity of the geometrical structure of a dipole.
Even if the above results are encouraging, we can observe in

Figs. 4–6 that the three sets of curves describing the resonances show a
similar relative behavior for a given n value, but the relative positions
of these curves are not identical. In particular, for a given n, the
interceptions do not necessarily appear for all orders of resonance and,
when the interceptions are present for all orders of resonance, they
do not correspond to an identical LT value. On the other hand, for
given values of n and LT , the measurement at scale δ and the average
lacunarity currently provide a unique information that cannot hold,
in general, simultaneously for all the three resonances. To emphasize
the inability of Λ̄ to completely characterize the resonances, Fig. 10
reports the first resonance as a function of the average lacunarity
and confirms that two different dipoles with the same value of Λ̄ can
have different resonances. Even if the measurement at scale δ and the
average lacunarity are unable, when taken individually, to completely
characterize the resonant behavior of a convoluted dipole, we may not
exclude the existence of a function dependent on the order of resonance
and involving D and Λ̄ together. To investigate this possibility we
have carried out a further simulation by generating, for n = 3, a
generalized Von Koch dipole with ϑ ∼= 67.25o and a Minkowski dipole
with w ∼= 0.76. These values are selected because they provide two
different prefractal dipoles having the same value of measurement at
scale δ (D ∼= 1.33) and the same average lacunarity (Λ̄ ∼= 1.43). In this
case the three resonances of the Von Koch dipole occur at 79 MHz,
221MHz, and 348 MHz, while those of the Minkowski dipole occur
at 75MHz, 210MHz, and 332 MHz. Hence, equal values of D and
Λ̄ lead anyway to different resonances. This means that also average
lacunarity and measurement at scale δ together are not sufficient to
completely characterize the resonant behavior of a prefractal dipole.

It is worth to notice that, for the particular case of the Von Koch
geometry, an empirical formula that relates the first resonant frequency
to the Hausdorff dimension has been derived in [11], while another
one relating the first resonant frequency to the average lacunarity has
been presented in [14]. Furthermore, in [15], an analytical model that
provides the resonant frequencies of the Minkowski dipole as a function
of DH has been described. Therefore, the proof provided in this study
states the impossibility of characterizing the resonant behavior of a
convoluted antenna in general by using only DH , D and Λ̄, but does
not deny the existence of a relationship between the resonances and
the considered mathematical quantities in some specific cases.
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5. DISCUSSION AND CONCLUSIONS

The possibility to use dimension and average lacunarity for comparing
the resonant behavior of different convoluted wire antennas has been
investigated. Since previous studies have shown that the Hausdorff
dimension does not play e decisive role in determining the resonances,
the adoption of the measurement at scale δ has been proposed. The
results have revealed that more information regarding the behavior of
the resonances can be inferred from this measure with respect to the
Hausdorff dimension, since the measurement at scale δ is evaluated
adopting a numerical approach, that provides results more adherent
to the actual geometry of a dipole. A better analogy has been
observed between the average lacunarity and the resonances, thanks
to the ability of the gliding-box algorithm to account for all possible
translations of the boxes at different scales. A common advantage of
the measurement at scale δ and the average lacunarity is their ability
to analyze real curves, including both prefractal and non-prefractal
dipoles. It is worth to notice, however, that even if the average
lacunarity provides more accurate information with respect to the
measurement at scale δ, this information is obtained at the cost of a
considerable increase of the computation time because, to evaluate the
lacunarity, all possible translations must be considered for each grid.
Thus, differently from the Hausdorff dimension, the measurement at
scale δ may be used for practical purposes, in order to perform a rough
and fast comparison between two geometries. If the objective is the
design of a convoluted dipole, the estimation of the measurement at
scale δ may represent a first step to compare different possibilities
before the accurate electromagnetic simulation. This possibility is
partly allowed by the average lacunarity, which is a more accurate
measure, but requires much more time for computation.

It is also worth to notice that the presented analysis has been
performed considering dipoles with really similar characteristics (equal
height, equal length, and equal wire radius), and hence with really
similar resonances. Thus, the inability to completely characterize the
resonant behavior of a convoluted dipole using the measurement at
scale δ and the average lacunarity together, has been proved in extreme
conditions. Therefore, this investigation excludes the complete control
of these two quantities on the resonant behavior of a convoluted dipole,
but does not exclude the possible existence of a direct relationship for
some specific cases and, moreover, cannot exclude the possibility that
the measurement at scale δ and the average lacunarity have a partial,
perhaps strong, influence on the resonances.
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